【題目】解方程:x2-x=-2(x-1)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn). 例如,對于函數(shù)y=-x+1,令y=0,可得x=1,我們就說x=1是函數(shù)y=-x+1的零點(diǎn).己知函數(shù)y=x2-2(m+1)x-2(m+2)
(m為常數(shù)) .(1)當(dāng)m=-1時,求該函數(shù)的零點(diǎn);
(2)證明:無論m取何值,該函數(shù)總有兩個零點(diǎn);
(3)設(shè)函數(shù)的兩個零點(diǎn)分別為和,且,求此時的函數(shù)解析式,并判斷點(diǎn)(n+2,n2-10)是否在此函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2 , 直線l與l1、l2分別交于A、B兩點(diǎn),點(diǎn)M,N分別在l1、l2上,點(diǎn)M,N,P均在l的同側(cè)(點(diǎn)P不在l1、l2上),若∠PAM=α,∠PBN=β.
(1)當(dāng)點(diǎn)P在l1與l2之間時. 求∠APB的大。ㄓ煤、β的代數(shù)式表示);
(2)若∠APM的平分線與∠PBN的平分線交于點(diǎn)P1 , ∠P1AM的平分線與∠P1BN的平分線交于點(diǎn)P2 , …,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點(diǎn)Pn , 則∠AP1B= , ∠APnB= . (用含α、β的代數(shù)式表示,其中n為正整數(shù))
(3)當(dāng)點(diǎn)P不在l1與l2之間時. 若∠PAM的平分線與∠PBN的平分線交于點(diǎn)P,∠P1AM的平分線與∠P1BN的平分線交于點(diǎn)P2 , …,∠Pn﹣1AM的平分線與∠Pn﹣1BN的平分線交于點(diǎn)Pn , 請直接寫出∠APnB的大。ㄓ煤、β的代數(shù)式表示,其中n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn) A(a+b,2-a)與點(diǎn)B(a-5,b-2a)關(guān)于y軸對稱.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)如果點(diǎn)B關(guān)于x軸的對稱點(diǎn)是C,在圖中標(biāo)出點(diǎn)A、B、C,并求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長度的三線段,能組成等腰三角形的是 ( )
A. 1cm 1cm 2cm B. 2cm 2 cm 5 cm
C. 3cm 3cm 5cm D. 3cm 4cm 5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA.下列結(jié)論:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正確的是
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用公式法解方程x2-2=-3x時,a , b , c的值依次是( )
A.0,-2,-3
B.1,3,-2
C.1,-3,-2
D.1,-2,-3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com