.如圖,坐標平面內(nèi)一點A(2,-1),O為原點,P是x軸上的一個動點,如果以點P、O、A為頂點的三角形是等腰三角形,那么符合條件的動點P的個數(shù)為(    )

(A)2        (B)3        (C)4        (D)5

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

先將一矩形ABCD置于直角坐標系中,使點A與坐標系的原點重合,邊AB、AD分別落在x軸、y軸上(如圖1),再將此矩形在坐標平面內(nèi)按逆時針方向繞原點旋轉(zhuǎn)30°(如圖2),若AB=4,BC=3,請分別在圖1和圖2中求出點B和點C的坐標.
(備選數(shù)據(jù):sin30°=
1
2
,cos30°=
3
2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•道里區(qū)一模)如圖,在平面直角坐標系內(nèi),點O為坐標原點,直線y=-x+5交x軸于點A,交y軸于點B,直線CD交x軸負半軸于點C,交y軸正半軸于點D,直線CD交AB于點E,過點E作x軸的垂線,點F為垂足,若EF=3,tan∠ECF=
12

(1)求直線CD的解析式;
(2)橫坐標為t的點P在CD(點P不與點C,點D重合)上,過點P作x軸的平行線交AB于點G,過點G作AB的垂線交y軸于點H,設線段OH的長為d,求d與t之間的函數(shù)關系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,當t為何值時,OH的中點在以PF為直徑的圓上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•宛城區(qū)一模)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=-
4
9
x2+bx+c經(jīng)過A,C兩點,與AB邊交于點D.

(Ⅰ)求拋物線的解析式;
(Ⅱ)動點P從C出發(fā),沿線段CB向終點B運動,同時動點Q從A出發(fā),沿線段AC向終點C運動,速度均為每秒1個單位長度,連接PQ,設運動時間為t秒,△CPQ的面積為S.
(1)求S關于t的函數(shù)表達式,并求出t為何值時,S取得最大值;
(2)當S最大時,從以下①,②中任選一題作答,若兩題都做只以第①題計分.
①在拋物線y=-
4
9
x2+bx+c的對稱軸l上,是否存在點F,使△FDQ為直角三角形?若存在,請直接寫出所有符合條件的點F的坐標;否則請說明理由.
②在坐標平面內(nèi),是否存在點F,使以C,P,Q,F(xiàn)為頂點的四邊形為平行四邊形?若存在,請直接寫出所有符合條件的點F的坐標;否則請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,直線y=-2x+2與x軸、y軸分別相交于點A,B,四邊形ABCD是正方形,反比例函數(shù)y=
kx
在第一象限的圖象經(jīng)過點D.
(1)求D點的坐標,以及反比例函數(shù)的解析式;
(2)若K是雙曲線上第一象限內(nèi)的任意點,連接AK、BK,設四邊形AOBK的面積為S;試推斷當S達到最大值或最小值時,相應的K點橫坐標;并直接寫出S的取值范圍.
(3)試探究:將正方形ABCD沿左右(或上下)一次平移若干個單位后,點C的對應點恰好落在雙曲線上的方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xOy中,E(8,0),F(xiàn)(0,6).
(1)當G(4,8)時,則∠FGE=
 
°;
(2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點P,使∠FPE=90°且四邊形OEPF被過P點的一條直線分割成兩部分后,可以拼成一個正方形.
要求:寫出點P點坐標,畫出過P點的分割線并指出分割線(不必說明理由,不寫畫法).

查看答案和解析>>

同步練習冊答案