如圖,Rt△ABC在平面直角坐標(biāo)系中,BC在x軸上,B(-1,0)、A(0,2),AC⊥AB.
(1)求線段OC的長(zhǎng).
(2)點(diǎn)P從B點(diǎn)出發(fā)以每秒4個(gè)單位的速度沿x軸正半軸運(yùn)動(dòng),點(diǎn)Q從A點(diǎn)出發(fā)沿線段AC以個(gè)單位每秒速度向點(diǎn)C運(yùn)動(dòng),當(dāng)一點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)也隨之停止,設(shè)△CPQ的面積為S,兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒,求S與t之間關(guān)系式,并寫出自變量取值范圍.
(3)Q點(diǎn)沿射線AC按原速度運(yùn)動(dòng),⊙G過A、B、Q三點(diǎn),是否有這樣的t值使點(diǎn)P在⊙G上?如果有求t值,如果沒有說明理由.

【答案】分析:(1)利用△AOB∽△COA即可求得OC=4.
(2)分當(dāng)P在BC上,Q在線段AC上時(shí)、當(dāng)P在BC延長(zhǎng)線上,Q在線段AC上時(shí)、當(dāng)C、P、Q都在同一直線上利用△CQD∽△CAO求得t值即可.
(3)若點(diǎn)P在圓G上,因?yàn)锳C⊥AB,所以BQ是直徑,所以∠BPQ=Rt∠,即PQ⊥BC,則BP2+PQ2=BQ2=BA2+AQ2,得到有關(guān)t的式子求解即可.
解答:解:(1)∵AC⊥AB,
∴∠ABO+∠ACO=90°,
∵∠BAO+∠ABO=90°,
∴∠BAO=∠ACO,∠ABO=∠OAC,
∴△AOB∽△COA,
=
∵B(-1,0)、A(0,2),
∴OA=2,OB=1,
,
∴OC=4;

(2)①當(dāng)P在BC上,Q在線段AC上時(shí),(0<t<)過點(diǎn)Q作QD⊥BC于D,
如圖所示,則CQ=2-t,CP=5-4t,
由△CQD∽△CAO可得QD=2-t,
所以S=CP•QD=(5-4t)(2-t),
即S=2t2-t+5(0<t<);
②當(dāng)P在BC延長(zhǎng)線上,Q在線段AC上時(shí)(<t<2),過點(diǎn)Q作QD⊥BC于D,
如圖所示,則CQ=2-t,CP=4t-5,
由△CQD∽△CAO可得QD=2-t,
所以S=CP•QD=(4t-5)(2-t),
即S=-2t2+t-5(<t<2),
③當(dāng)t=或t=2時(shí)C、P、Q都在同一直線上,S=0.

(3)若點(diǎn)P在圓G上,因?yàn)锳C⊥AB,所以BQ是直徑,所以∠BPQ=90°,即PQ⊥BC,
則BP2+PQ2=BQ2=BA2+AQ2,
,
解得(不合題意,舍去)
所以當(dāng)t=時(shí),點(diǎn)P在圓G上.
(也可以在(2)的基礎(chǔ)上分類討論,利用相似求得)
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì)、勾股定理及圓周角定理的知識(shí),綜合性比較強(qiáng),難度較大.本題中重點(diǎn)滲透了方程思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•橋東區(qū)二模)如圖,Rt△ABC在平面直角坐標(biāo)系中,BC在x軸上,B(-1,0)、A(0,2),AC⊥AB.
(1)求線段OC的長(zhǎng).
(2)點(diǎn)P從B點(diǎn)出發(fā)以每秒4個(gè)單位的速度沿x軸正半軸運(yùn)動(dòng),點(diǎn)Q從A點(diǎn)出發(fā)沿線段AC以
5
個(gè)單位每秒速度向點(diǎn)C運(yùn)動(dòng),當(dāng)一點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)也隨之停止,設(shè)△CPQ的面積為S,兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒,求S與t之間關(guān)系式,并寫出自變量取值范圍.
(3)Q點(diǎn)沿射線AC按原速度運(yùn)動(dòng),⊙G過A、B、Q三點(diǎn),是否有這樣的t值使點(diǎn)P在⊙G上?如果有求t值,如果沒有說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河北省保定市易縣九年級(jí)第一次模擬檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,Rt△ABC在平面直角坐標(biāo)系中,BCx軸上,B (-1,0)、A (0,2),ACAB

(1)求線段OC的長(zhǎng);
(2)點(diǎn)PB點(diǎn)出發(fā)以每秒4個(gè)單位的速度沿x軸正半軸運(yùn)動(dòng),點(diǎn)QA點(diǎn)出發(fā)沿線段AC以每秒個(gè)單位的速度向點(diǎn)C運(yùn) 動(dòng),當(dāng)一點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)也隨之停止,設(shè)△CPQ的面 積為S,兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒,求St之間關(guān)系式,并寫出自變量取值范圍;
(3)Q點(diǎn)沿射線AC按原速度運(yùn)動(dòng),⊙GA、B、Q三點(diǎn),是否有這樣的t值使點(diǎn)P在⊙G上、如果有求t值,如果沒有說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(四川南充) 題型:填空題

如圖,Rt△ABC在第一象限,,AB=AC=2,點(diǎn)A在直線上,其中點(diǎn)A的橫坐標(biāo)為1,且AB∥軸,AC∥軸,若雙曲線與△有交點(diǎn),則k的取值范圍是                 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河北省保定市易縣九年級(jí)第一次模擬檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,Rt△ABC在平面直角坐標(biāo)系中,BCx軸上,B (-1,0)、A (0,2),ACAB

(1)求線段OC的長(zhǎng);

(2)點(diǎn)PB點(diǎn)出發(fā)以每秒4個(gè)單位的速度沿x軸正半軸運(yùn)動(dòng),點(diǎn)QA點(diǎn)出發(fā)沿線段AC以每秒個(gè)單位的速度向點(diǎn)C運(yùn) 動(dòng),當(dāng)一點(diǎn)停止運(yùn)動(dòng),另一點(diǎn)也隨之停止,設(shè)△CPQ的面 積為S,兩點(diǎn)同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為t秒,求St之間關(guān)系式,并寫出自變量取值范圍;

(3)Q點(diǎn)沿射線AC按原速度運(yùn)動(dòng),⊙GA、BQ三點(diǎn),是否有這樣的t值使點(diǎn)P在⊙G上、如果有求t值,如果沒有說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(湖北荊門) 題型:填空題

如圖,Rt△ABC在第一象限,,AB=AC=2,點(diǎn)A在直線上,其中點(diǎn)A的橫坐標(biāo)為1,且AB∥軸,AC∥軸,若雙曲線與△有交點(diǎn),則k的取值范圍是                 .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案