【題目】中央電視臺的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書“,某校對八年級部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計 | 50 | c |
我們定義頻率=,比如由表中我們可以知道在這次隨機(jī)調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學(xué)為18人,因此這個人數(shù)對應(yīng)的頻率就是=0.36.
(1)統(tǒng)計表中的a、b、c的值;
(2)請將頻數(shù)分布表直方圖補(bǔ)充完整;
(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);
(4)若該校八年級共有600名學(xué)生,你認(rèn)為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學(xué)生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計算過程.
【答案】(1)10、0.28、1;(2)見解析;(3)6.4本;(4)264名;
【解析】
(1)根據(jù)百分比=計算即可;
(2)求出a組人數(shù),畫出直方圖即可;
(3)根據(jù)平均數(shù)的定義計算即可;
(4)利用樣本估計總體的思想解決問題即可;
(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;
(2)補(bǔ)全圖形如下:
(3)所有被調(diào)查學(xué)生課外閱讀的平均本數(shù)==6.4(本)
(4)該校八年級共有600名學(xué)生,該校八年級學(xué)生課外閱讀7本和8本的總?cè)藬?shù)有600×=264(名).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級學(xué)生體育測試成績情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖荆碆、C、D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)
(1)求出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計圖(圖2)中C級所在的扇形圓心角的度數(shù);
(3)若該校九年級學(xué)生共有500人,請你估計這次考試中A級和B級的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中有一格點三角形,該三角形的三個頂點為:A(1,1),B(﹣3,1),C(﹣3,﹣1).
(1)若△ABC的外接圓的圓心為P,則點P的坐標(biāo)為_____,⊙P的半徑為_____;
(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點O點為位似中心,將△ABC按相似比2:1放大,A、B、C的對應(yīng)點分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個單位長度,能使得B'C'所在的直線與⊙P相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.
根據(jù)圖示填寫下表:
平均數(shù)分 | 中位數(shù)分 | 眾數(shù)分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學(xué)校的決賽成績較好;
計算兩校決賽成績的方差,并判斷哪個學(xué)校代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形場地,點E在DC的延長線上,AE與BC相交于點F,有甲、乙、丙三名同學(xué)同時從點A出發(fā),甲沿著A﹣B﹣F﹣C的路徑行走至C,乙沿著A﹣F﹣E﹣C﹣D的路徑行走至D,丙沿著A﹣F﹣C﹣D的路徑行走至D,若三名同學(xué)行走的速度都相同,則他們到達(dá)各自的目的地的先后順序(由先至后)是( )
A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當(dāng)y1>y2時,試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+x+c的頂點坐標(biāo)為(1,-4),圖象又經(jīng)過點(2,-3).
求:(1)拋物線y=ax2+x+c的解析式.
(2)求拋物線y=ax2+x+c與一次函數(shù)y=3x+11的交點坐標(biāo).
(3)求不等式ax2+x+c>3x+11的解集(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高 米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com