在向汶川地震災(zāi)區(qū)執(zhí)行空投任務(wù)中,一架飛機(jī)在空中沿著水平方向向空投地O處上方直線飛行,飛行員在A點(diǎn)測(cè)得O處的俯角為30°,繼續(xù)向前飛行1千米到達(dá)B處測(cè)得O處的俯角為60°.飛機(jī)繼續(xù)飛行0.1千米到達(dá)E處進(jìn)行空投,已知空投物資在空中下落過程中的軌跡是拋物線,若要使空投物資剛好落在O處.
(1)求飛機(jī)的飛行高度.
(2)以拋物線頂點(diǎn)E為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求拋物線的解析式.(所有答案可以用根號(hào)表示)
(1)過點(diǎn)O作OD⊥AB于點(diǎn)D,
∵由已知條件得:∠A=30°,∠OBD=60°
∴∠AOB=∠A=30°,
∴BO=BA=1,
∴在Rt△BOD中,OD=OB•cos30°=
3
2
千米;

(2)∵∠OBD=60°,BO=1,
∴BD=
1
2

∴ED=BD-BE=
1
2
-0.1=
2
5
,
∵OD=
3
2

∴點(diǎn)O的坐標(biāo)為:(
2
5
,-
3
2
),
設(shè)二次函數(shù)的解析式為y=ax2
則-
3
2
=
4
25
a
解得a=-
25
3
8

故二次函數(shù)的解析式為:y=-
25
3
8
x2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

松花江大橋的一個(gè)橋拱為拋物線形狀,拱頂A離橋面50m,橋面上拱形鋼梁之間的距離BC=120m,建立如圖所示的直角坐標(biāo)系.
(1)寫出A,B,C三點(diǎn)的坐標(biāo);
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,其頂點(diǎn)為D,且直線DC的解析式為y=x+3.
(1)求二次函數(shù)的解析式;
(2)求△ABC外接圓的半徑及外心的坐標(biāo);
(3)若點(diǎn)P是第一象限內(nèi)拋物線上一動(dòng)點(diǎn),求四邊形ACPB的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將Rt△AOB繞著直角頂點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點(diǎn).
(1)求這條拋物線的解析式;
(2)連接DB,P是線段BC上一動(dòng)點(diǎn)(P不與B、C重合),過點(diǎn)P作PEBD交CD于E,則當(dāng)△DEP面積最大時(shí),求PE的解析式;
(3)作點(diǎn)D關(guān)于此拋物線對(duì)稱軸的對(duì)稱點(diǎn)F,連接CF交對(duì)稱軸于點(diǎn)M,拋物線上一動(dòng)點(diǎn)R,x軸上一動(dòng)點(diǎn)Q,則在拋物線上是否存在點(diǎn)R,x軸上是否存在點(diǎn)Q,使得以C、M、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=ax2+bx+c經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)N,直線y=kx+b1與兩坐標(biāo)軸分別交于A、D兩點(diǎn),與拋物線交于B(1,3)、C(2,2)兩點(diǎn).
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動(dòng)點(diǎn)P(x,y),求△PON的面積最大值;
(3)若動(dòng)點(diǎn)P保持(2)中的運(yùn)動(dòng)路線,問是否存在點(diǎn)P,使得△POA的面積等于△POD面積的
1
9
?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對(duì)稱軸為直線x=______,拋物線與x軸的另一個(gè)交點(diǎn)D的坐標(biāo)為______;
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

四邊形OABC是等腰梯形,OABC.在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點(diǎn)M從O點(diǎn)以每秒2個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí)點(diǎn)N從B點(diǎn)出發(fā)以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)N作NP垂直于x軸于P點(diǎn)連接AC交NP于Q,連接MQ.
(1)寫出C點(diǎn)的坐標(biāo);
(2)若動(dòng)點(diǎn)N運(yùn)動(dòng)t秒,求Q點(diǎn)的坐標(biāo);(用含t的式子表示)
(3)其△AMQ的面積S與時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)當(dāng)t取何值時(shí),△AMQ的面積最大;
(5)當(dāng)t為何值時(shí),△AMQ為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點(diǎn)C的直線y=kx+b與拋物線相交于點(diǎn)E(4,m),請(qǐng)求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點(diǎn)P使得△ABP為等腰三角形?若存在,請(qǐng)指出一共有幾個(gè)滿足條件的點(diǎn)P,并求出其中一個(gè)點(diǎn)的坐標(biāo);若不存在這樣的點(diǎn)P,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

徒駭河大橋是我市第一座特大型橋梁,大橋橋體造型新穎,氣勢(shì)恢宏,兩條拱肋如長(zhǎng)虹臥波,極具時(shí)代氣息(如圖①).大橋?yàn)橹谐惺綉宜鞴皹颍髽虻闹鞴袄逜CB是拋物線的一部分(如圖②),跨徑AB為100m,拱高OC為25m,拋物線頂點(diǎn)C到橋面的距離為17m.
(1)請(qǐng)建立適當(dāng)?shù)淖鴺?biāo)系,求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)七月份汛期來臨,河水水位上漲,假設(shè)水位比AB所在直線高出1.96m,這時(shí)位于水面上的拱肋的跨徑是多少?在不計(jì)橋面厚度的情況,一條高出水面4.6m的游船是否能夠順利通過大橋?

查看答案和解析>>

同步練習(xí)冊(cè)答案