【題目】雷達二維平面定位的主要原理是:測量目標(biāo)的兩個信息距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測器的距離;表示以正東為始邊,逆時針旋轉(zhuǎn)后的角度.如圖,雷達探測器顯示在點A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

【答案】B

【解析】分析:按已知可得表示一個點距離是自內(nèi)向外的環(huán)數(shù),角度是所在列的度數(shù),據(jù)此進行判斷即可得解.

詳解(m,α),其中,m表示目標(biāo)與探測器的距離;α表示以正東為始邊,逆時針旋轉(zhuǎn)后的角度,∴用這種方法表示目標(biāo)B的位置為(4,150°).

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長為(
A.1.8
B.2.4
C.3.2
D.3.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點P是直線DB上一個動點,連接AP,作PE⊥AP交BC所在的直線于點E.

(1)如圖1,點P在BD的延長線上,PE⊥EC,AD=1,直接寫出PE的長;
(2)點P在線段BD上(不與B,D重合),依題意,將圖2補全,求證:PA=PE;
(3)點P在DB的延長線上,依題意,將圖3補全,并判斷PA=PE是否仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018120日,山西迎來了復(fù)興號列車,與和諧號相比,復(fù)興號列車時速更快,安全性更好.已知太原南﹣北京西全程大約500千米,復(fù)興號”G92次列車平均每小時比某列和諧號列車多行駛40千米,其行駛時間是該列和諧號列車行駛時間的(兩列車中途停留時間均除外).經(jīng)查詢,復(fù)興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐復(fù)興號”G92次列車從太原南到北京西需要多長時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,△ABO的頂點坐標(biāo)分別為O(0,0)、A(2a,0)、B(0,﹣a),線段EF兩端點坐標(biāo)為E(﹣m,a+1),F(xiàn)(﹣m,1)(2a>m>a);直線l∥y軸交x軸于P(a,0),且線段EFCD關(guān)于y軸對稱,線段CDNM關(guān)于直線l對稱.

(1)求點N、M的坐標(biāo)(用含m、a的代數(shù)式表示);

(2)△ABO△MFE通過平移能重合嗎?能與不能都要說明其理由,若能請你說出一個平移方案(平移的單位數(shù)用m、a表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),D(6,4),將線段AD平移得到BC,使B(0,b),且a,b滿足|a﹣2|+=0,延長BCx軸于點E.

(1)填空:點A(   ,   ),點B(   ,   ),∠DAE=   

(2)求點C和點E的坐標(biāo);

(3)設(shè)點Px軸上的一動點(不與點A、E重合),且PA>AE,探究∠APC∠PCB的數(shù)量關(guān)系?寫出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在△AFD和△CEB中,點A、E、F、C在同一直線上,AE=CF,B=D,ADBC.

(1)ADBC相等嗎?請說明理由;

(2)BEDF平行嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案