【題目】如圖,在四邊形ABCD中,AD∥BC, ,點E是BC的中點,連接AE、BD.若EA⊥AB,BC=26,DC=12,求△ABD的面積.

【答案】解:連接DE,

∵點E是BC的中點,BC=26,
∴BE=EC= BC=13,
∵AD= BC,
∴AD=BE=CE=13.
∵AD∥BE,
∴四邊形ABED與四邊形AECD都是平行四邊形,
∴AE=DC=12,SABD= SABED
在△ABE中,
∵∠BAE=90°,
∴AB= ,
∴SABD= SABED= ×5×12=30.
【解析】連接DE,根據(jù)點E是BC的中點,AD= BC,可得出四邊形ABED與四邊形AECD都是平行四邊形,故可得出AE=DC=12,SABD= SABED , 根據(jù)勾股定理求出AB的長,進而可得出結(jié)論。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P關(guān)于x軸的對稱點為(2,-1),那么點P的坐標(biāo)是(

A.-2,1B.1,-2C.-1,-2D.2,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,最適合采用普查的是( )

A.了解一批燈泡的使用壽命B.了解中央電視臺《最強大腦》欄目的收視率

C.了解全國中學(xué)生體重情況D.了解某班學(xué)生對七步洗手法的知曉率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,點D是AB的中點,分別過點D作DE⊥AC,DF⊥BC,垂足分別為點E、F.求證:四邊形CEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式
(1)a3﹣2a2+a
(2)a2(x﹣y)+16(y﹣x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小韋隨機調(diào)查了若干市民租用共享單車后騎車時間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:

(1)這次被調(diào)查的總?cè)藬?shù)是多少?

(2)試求表示A組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖.

(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(﹣2,3),B21),將線段AB平移后,A點的坐標(biāo)變?yōu)椋ī?/span>3,2),則點B的坐標(biāo)變?yōu)椋ā 。?/span>

A. (﹣1,2B. 1,0C. (﹣1,0D. 1,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B的坐標(biāo)分別為(1, 4)和(4, 4),拋物線的頂點在線段AB上運動,與x軸交于C、D兩點(CD的左側(cè)),點C的橫坐標(biāo)最小值為,則點D的橫坐標(biāo)最大值為_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小方格都是邊長為1的正方形,則四邊形ABCD的面積是(
A.25
B.12.5
C.9
D.8.5

查看答案和解析>>

同步練習(xí)冊答案