(2008•泰安)若等腰梯形ABCD的上、下底之和為4,并且兩條對角線所夾銳角為60°,則該等腰梯形的面積為    .(結果保留根號的形式)
【答案】分析:根據題意作圖,題中指出兩條對角線所夾銳角為60°而沒有指明是哪個角,所以做題時要分兩種情況進行分析,從而得到最后答案.
解答:解:已知梯形的上下底的和是4,設AB+CD=4,
對角線AC與BD交于點O,經過點C作對角線BD的平行線CE交AB的延長線于點E.
(1)當∠DOC=60度時,∠ACE=60°,△ACE是等邊三角形,邊長AC=CE=AE=4,
作CF⊥AE,CF=4×sin60°=4×=2
因而面積是×4×2=4;
(2)當∠BOC=60度時,∠AOB=180°-60°=120°,又BD∥CE,∴∠ACE=∠AOB=120°,
∴△ACE是等腰三角形,且底邊AE=4,
因而∠CEA==30°,作CF⊥AE,則AF=FE=2,CF=2×tan30°=
則△ACE的面積是×4×=
而△ACE的面積等于梯形ABCD的面積.
因而等腰梯形的面積為4
點評:此題考查等腰梯形的性質及梯形中常見的輔助線的作法,通過這條輔助線可以把兩對角線的夾角的問題轉化為三角形的角的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2008•泰安)在等邊△ABC中,點D為AC上一點,連接BD,直線l與AB,BD,BC分別相交于點E,P,F(xiàn),且∠BPF=60度.
(1)如圖1,寫出圖中所有與△BPF相似的三角形,并選擇其中一對給予證明;
(2)若直線l向右平移到圖2,圖3的位置時(其它條件不變),(1)中的結論是否仍然成立?若成立,請寫出來(不證明),若不成立,請說明理由;
(3)探究:如圖1,當BD滿足什么條件時(其它條件不變),PF=PE?請寫出探究結果,并說明理由.
(說明:結論中不得含有未標識的字母)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(05)(解析版) 題型:填空題

(2008•泰安)若等腰梯形ABCD的上、下底之和為4,并且兩條對角線所夾銳角為60°,則該等腰梯形的面積為    .(結果保留根號的形式)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(17)(解析版) 題型:解答題

(2008•泰安)在等邊△ABC中,點D為AC上一點,連接BD,直線l與AB,BD,BC分別相交于點E,P,F(xiàn),且∠BPF=60度.
(1)如圖1,寫出圖中所有與△BPF相似的三角形,并選擇其中一對給予證明;
(2)若直線l向右平移到圖2,圖3的位置時(其它條件不變),(1)中的結論是否仍然成立?若成立,請寫出來(不證明),若不成立,請說明理由;
(3)探究:如圖1,當BD滿足什么條件時(其它條件不變),PF=PE?請寫出探究結果,并說明理由.
(說明:結論中不得含有未標識的字母)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市平谷區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2008•泰安)如圖所示,△ABC是直角三角形,∠ABC=90°,以AB為直徑的⊙O交AC于點E,點D是BC邊的中點,連接DE.
(1)求證:DE與⊙O相切;
(2)若⊙O的半徑為,DE=3,求AE.

查看答案和解析>>

同步練習冊答案