【題目】已知點A(x1 , y1),B(x2 , y2)是反比例函數(shù)y=﹣ 的圖像上的兩點,若x1<0<x2 , 則下列結(jié)論正確的是( )
A.y1<0<y2
B.y2<0<y1
C.y1<y2<0
D.y2<y1<0
【答案】B
【解析】解:∵A(x1 , y1),B(x2 , y2)是反比例函數(shù)y=﹣ 的圖像上的兩點,
∴y1=﹣ ,y2=﹣ ,
∵x1<0<x2 ,
∴y2<0<y1 .
故選B.
【考點精析】掌握反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+ 的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C坐標為(8,0),連AB,AC,點N在線段BC上運動(不與點B,C重合)過點N作NM∥AC,交AB于點M.
(1)判斷△ABC的形狀,并說明理由;
(2)當以點A,M,N為頂點的三角形與以點A,B,O為頂點的三角形相似時,求點N的坐標;
(3)當△AMN面積等于3時,直接寫出此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐際系xOy中,當m,n滿足mn=k(k為常數(shù),且m>0,n>0)時,就稱點(m,n)為“等積點”.
(1)若k=4,求函數(shù)y=x﹣4的圖象上滿足條件的,“等積點”坐標;
(2)若直線y=﹣x+b(b>0)與x軸、y軸分別交于點A和點B,并且直線有且只有一個“等積點”,過點A與y軸平行的直線和過點B與x軸平行的直線交于點C,點E是直線AC上的“等積點”,點F是直線BC上的“等積點”,若△OEF的面積為k2+ k﹣ ,求EF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】代數(shù)式ax2+bx+c(a≠0,a,b,c是常數(shù))中,x與ax2+bx+c的對應值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
請判斷一元二次方程ax2+bx+c=0(a≠0,a,b,c是常數(shù))的兩個根x1 , x2的取值范圍是下列選項中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)試說明∠BAE=∠DAF;
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,求兩次都摸到白球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點B,F(xiàn)的坐標分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(點P在GC上)是位似中心,則點P的坐標為( )
A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點D在BC邊上,有下列三個關(guān)系式:
① BAC=90°,② = ,③AD⊥BC.
選擇其中兩個式子作為已知,余下的一個作為結(jié)論,寫出已知,求證,并證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com