已知:拋物線y=x2+(b-1)x+c經(jīng)過點(diǎn)P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點(diǎn)坐標(biāo);
(3)若b>3,過點(diǎn)P作直線PA⊥y軸,交y軸于點(diǎn)A,交拋物線于另一點(diǎn)B,且BP=2PA,求這條拋物線所對(duì)應(yīng)的二次函數(shù)關(guān)系式.(提示:請(qǐng)畫示意圖思考)
(1)依題意得:(-1)2+(b-1)(-1)+c=-2b,
∴b+c=-2.

(2)當(dāng)b=3時(shí),c=-5,
∴y=x2+2x-5=(x+1)2-6,
∴拋物線的頂點(diǎn)坐標(biāo)是(-1,-6).

(3)當(dāng)b>3時(shí),拋物線對(duì)稱軸x=-
b-1
2
<-1

∴對(duì)稱軸在點(diǎn)P的左側(cè)
因?yàn)閽佄锞是軸對(duì)稱圖形,P(-1,-2b)且BP=2PA
∴B(-3,-2b)
-
b-1
2
=-2,
∴b=5
又∵b+c=-2,
∴c=-7
∴拋物線所對(duì)應(yīng)的二次函數(shù)關(guān)系式為y=x2+4x-7.
解法2:當(dāng)b>3時(shí),-b<-3,1-b<-2,則x=-
b-1
2
=
1-b
2
<-1,
∴對(duì)稱軸在點(diǎn)P的左側(cè),因?yàn)閽佄锞是軸對(duì)稱圖形
∵P(-1,-2b),且BP=2PA,
∴B(-3,-2b)
∴(-3)2-3(b-1)+c=-2b
又∵b+c=-2,
解得b=5,c=-7
這條拋物對(duì)應(yīng)的二次函數(shù)關(guān)系式為y=x2+4x-7.
解法3:(3)∵b+c=-2,
∴c=-b-2
∴y=x2+(b-1)x-b-2
BPx軸,
∴x2+(b-1)x-b-2=-2b
即x2+(b-1)x+b-2=0
解得:x1=-1,x2=-(b-2),即xB=-(b-2)
由BP=2PA,
∴-1+(b-2)=2×1
∴b=5,c=-7
∴拋物線所對(duì)應(yīng)的二次函數(shù)關(guān)系式為y=x2+4x-7.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x,y軸上,點(diǎn)D在OA上,且CD=AD,
(1)求直線CD的解析式;
(2)求經(jīng)過B、C、D三點(diǎn)的拋物線的解析式;
(3)在上述拋物線上位于x軸下方的圖象上,是否存在一點(diǎn)P,使△PBC的面積等于矩形的面積?若存在,求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(
3
,0),B(-
3
,0),以點(diǎn)A為圓心,AB為半徑的圓與x軸相交于點(diǎn)B,C,與y軸相交于點(diǎn)D,E.
(1)若拋物線y=
1
3
x2+bx+c經(jīng)過C,D兩點(diǎn),求拋物線的解析式,并判斷點(diǎn)B是否在該拋物線上;
(2)在(1)中的拋物線的對(duì)稱軸上求一點(diǎn)P,使得△PBD的周長(zhǎng)最小;
(3)設(shè)Q為(1)中的拋物線的對(duì)稱軸上的一點(diǎn),在拋物線上是否存在這樣的點(diǎn)M,使得四邊形BCQM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線經(jīng)過A、B、C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.
(1)求該拋物線的解析式;
(2)求D和E的坐標(biāo),并求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=3x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線交x軸于另一點(diǎn)C(3,0).
(1)求A、B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)99象過點(diǎn)A(5,-1),B(1,1),C(-1,2),求此二次函數(shù)9解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-
1
2
x2+bx+c
經(jīng)過A(-2,0),C(4,0)兩點(diǎn),和y軸相交于點(diǎn)B,連接AB、BC.
(1)求拋物線的解析式(關(guān)系式).
(2)在第一象限外,是否存在點(diǎn)E,使得以BC為直角邊的△BCE和Rt△AOB相似?若存在,請(qǐng)簡(jiǎn)要說明如何找到符合條件的點(diǎn)E,然后直接寫出點(diǎn)E的坐標(biāo),并判斷是否有滿足條件的點(diǎn)E在拋物線上;若不存在,請(qǐng)說明理由.
(3)在直線BC上方的拋物線上,找一點(diǎn)D,使S△BCD:S△ABC=1:4,并求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),直線y=kx-k2(k為常數(shù),且k>0)與y軸交于點(diǎn)C,與拋物線y=ax2有唯一公共點(diǎn)B,點(diǎn)B在x軸上的正投影為點(diǎn)E,已知點(diǎn)D(0,4).
(1)求拋物線的解析式;
(2)是否存在實(shí)數(shù)k,使經(jīng)過D,O,E三點(diǎn)的圓與拋物線的交點(diǎn)恰好為B?若存在,請(qǐng)求出時(shí)k的值;若不存在,請(qǐng)說明理由.
(3)如圖(2),連接CE,已知點(diǎn)F(0,1),直線FA與CE相交于點(diǎn)M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個(gè)等式中有一個(gè)恒成立.請(qǐng)判斷哪一個(gè)恒成立,并證明這個(gè)成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的價(jià)格購(gòu)進(jìn)一批荔枝進(jìn)行銷售,運(yùn)輸過程中質(zhì)量損耗5%,運(yùn)輸費(fèi)用是0.7元/千克,假設(shè)不計(jì)其他費(fèi)用.
(1)水果商要把荔枝售價(jià)至少定為多少才不會(huì)虧本?
(2)在銷售過程中,水果商發(fā)現(xiàn)每天荔枝的銷售量m(千克)與銷售單價(jià)x(元/千克)之間滿足關(guān)系:m=-10x+120,那么當(dāng)銷售單價(jià)定為多少時(shí),每天獲得的利潤(rùn)w最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案