已知:如下圖,在等腰三角形ABC的兩腰AB、AC上分別取點(diǎn)E、F,使AE=CF,已知BC=2,求證:EF≥1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo)3維同步訓(xùn)練與評(píng)價(jià)·數(shù)學(xué)·九年級(jí)·上 題型:047
已知:如下圖,在△ABC中D、E分別是AC、AB上的點(diǎn),BD、CE交于O.
給出下列四個(gè)條件①∠EBO=∠DCO ②∠BEO=∠CDO、跙E=CD、躉B=OC.
(1)上述四個(gè)條件中,哪兩個(gè)條件可以判別△ABC是等腰三角形(用序號(hào)寫出所有情形)?
(2)選擇(1)中的一種情形,證明△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:044
.閱讀材料:
如圖在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=
證明:AC⊥BD→
∴S
四邊形ABCD=S△ACD+S△ACB==
解答問(wèn)題:
(1
)上述證明得到的性質(zhì)可敘述為___________________________.(2
)已知:如下圖,等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD且相交于點(diǎn)P,BD=10cm,利用上述的性質(zhì)求梯形的面積.查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2009年重慶市中考數(shù)學(xué)試卷 題型:044
已知:如下圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過(guò)原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過(guò)點(diǎn)D作DE⊥DC,交OA于點(diǎn)E.
(1)求過(guò)點(diǎn)E、D、C的拋物線的解析式;
(2)將∠EDC繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:湖南省郴州市2011年中考數(shù)學(xué)試題 題型:059
已知:如下圖,等腰梯形ABCD的邊BC在x軸上,點(diǎn)A在y軸的正方向上,A(0,6),D(4,6),且AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、B、D三點(diǎn)的拋物線的解析式;
(3)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com