已知:如下圖,在等腰三角形ABC的兩腰AB、AC上分別取點(diǎn)E、F,使AE=CF,已知BC=2,求證:EF≥1.

答案:
解析:

  分析:此題看似簡(jiǎn)單,卻不易下手,若將圖形補(bǔ)成以BC為一邊且過(guò)點(diǎn)A的矩形,可使證明變得有的放矢.

  簡(jiǎn)評(píng):巧把等腰三角形補(bǔ)成矩形,題目的條件變得整體化,給解題帶來(lái)了方便.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo)3維同步訓(xùn)練與評(píng)價(jià)·數(shù)學(xué)·九年級(jí)·上 題型:047

  已知:如下圖,在△ABC中D、E分別是AC、AB上的點(diǎn),BD、CE交于O.

  給出下列四個(gè)條件①∠EBO=∠DCO ②∠BEO=∠CDO、跙E=CD、躉B=OC.

  (1)上述四個(gè)條件中,哪兩個(gè)條件可以判別△ABC是等腰三角形(用序號(hào)寫出所有情形)?

  (2)選擇(1)中的一種情形,證明△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

.閱讀材料:

如圖在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為P.


求證:S四邊形ABCD=

證明:AC⊥BD→

∴S四邊形ABCD=S△ACD+S△ACB=

=

解答問(wèn)題:

  (1)上述證明得到的性質(zhì)可敘述為___________________________.

  (2)已知:如下圖,等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD且相交于點(diǎn)P,BD=10cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年重慶市中考數(shù)學(xué)試卷 題型:044

已知:如下圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OA=2,OC=3.過(guò)原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過(guò)點(diǎn)DDEDC,交OA于點(diǎn)E

(1)求過(guò)點(diǎn)E、D、C的拋物線的解析式;

(2)將∠EDC繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)后,角的一邊與y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn)G.如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;

(3)對(duì)于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQAB的交點(diǎn)P與點(diǎn)C、G構(gòu)成的△PCG是等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:湖南省郴州市2011年中考數(shù)學(xué)試題 題型:059

已知:如下圖,等腰梯形ABCD的邊BCx軸上,點(diǎn)Ay軸的正方向上,A(0,6),D(4,6),且AB

(1)求點(diǎn)B的坐標(biāo);

(2)求經(jīng)過(guò)A、B、D三點(diǎn)的拋物線的解析式;

(3)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案