如圖,在平行四邊形ABCD中,E是CD上的一點,DE:EC=2:3,連接AE、BE、BD,且AE、BD交于點F,則SDEF:SEBF:SABF=( 。


  1. A.
    2:5:25
  2. B.
    4:9:25
  3. C.
    2:3:5
  4. D.
    4:10:25
D
試題分析:根據(jù)圖形知:△DEF的邊DF和△BFE的邊BF上的高相等,并設這個高為h,
∵四邊形ABCD是平行四邊形,
∴DC=AB,DC∥AB,
∵DE:EC=2:3,
∴DE:AB=2:5,
∵DC∥AB,
∴△DEF∽△BAF,
==,==,
====
∴SDEF:SEBF:SABF=4:10:25,
故選D.
考點:相似三角形的判定與性質;三角形的面積;平行四邊形的性質.
點評:根據(jù)平行四邊形的性質求出DC=AB,DC∥AB,求出DE:AB=2:5,根據(jù)相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面積比,根據(jù)三角形的面積公式求出△DEF和△EBF的面積比,即可求出答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習冊答案