已知,如圖AB是⊙O的直徑,半徑OC⊥AB,弦CD與AB交于點(diǎn)E.
(1)求證:△CBE∽△CDB;
(2)若AB=4,設(shè)CE的長(zhǎng)為x,CD的長(zhǎng)為y,寫出y與自變量x的函數(shù)關(guān)系式(不寫自變量x的取值范圍).

【答案】分析:(1)由兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似即可證明△CBE∽△CDB;
(2)由勾股定理可求出BC的長(zhǎng),由(1)中的結(jié)論即可得到y(tǒng)與自變量x的函數(shù)關(guān)系式.
解答:(1)證明:∵半徑OC⊥AB,
∴∠COB=90°,
∴∠D=45°,
∵OC=OB,
∴∠OCB=∠OBC=45°,
∴∠OBC=∠D=45°,
∴∠DCB=∠BCE,
∴△CBE∽△CDB;

(2)∵∠COB=90°,AB=4,
∴OB=OC=4,
∴BC==4,
∵△CBE∽△CDB,
,
∵CE的長(zhǎng)為x,CD的長(zhǎng)為y,
,
∴y=
點(diǎn)評(píng):本題考查了圓周角定理的運(yùn)用、勾股定理的運(yùn)用、相似三角形的判定和性質(zhì)以及由相似三角形的性質(zhì)得到的比例式所引發(fā)的線段之間的函數(shù)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖AB是⊙O的直徑,PB切⊙O于點(diǎn)B,PA交⊙O于點(diǎn)C,PF分別交AB精英家教網(wǎng)、BC于E、D,交⊙O于F、G,且BE、BD恰好是關(guān)于x的方程x2-6x+(m2+4m+13)=0(其中m為實(shí)數(shù))的兩根.
(1)求證:BE=BD.
(2)若GE•EF=6
3
,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知,如圖AB是⊙O的直徑,BC是⊙O的弦,⊙O的割線PDE垂直于AB于點(diǎn)F,交BC于點(diǎn)G,∠A=∠BCP.
求證:PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知,如圖AB是⊙O的直徑,半徑OC⊥AB,弦CD與AB交于點(diǎn)E.
(1)求證:△CBE∽△CDB;
(2)若AB=4,設(shè)CE的長(zhǎng)為x,CD的長(zhǎng)為y,寫出y與自變量x的函數(shù)關(guān)系式(不寫自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖AB是半圓0的直徑,點(diǎn)C在半圓上,CD⊥AB,垂足為D,切線PC交BA的延長(zhǎng)線于點(diǎn)P,AD,DB的長(zhǎng)是關(guān)于x的方程x2-(4m+2)+4m2=0(m>0)的兩根,且AD:DB=1:4,求:PO、PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2003•山西)已知:如圖AB是⊙O的直徑,PB切⊙O于點(diǎn)B,PA交⊙O于點(diǎn)C,PF分別交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是關(guān)于x的方程x2-6x+(m2+4m+13)=0(其中m為實(shí)數(shù))的兩根.
(1)求證:BE=BD.
(2)若GE•EF=6,求∠A的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案