(2006•北京)已知AB是半圓O的直徑,點(diǎn)C在BA的延長(zhǎng)線上運(yùn)動(dòng)(點(diǎn)C與點(diǎn)A不重合),以O(shè)C為直徑的半圓M與半圓O交于點(diǎn)D,∠DCB的平分線與半圓M交于點(diǎn)E.

(1)求證:CD是半圓O的切線(圖1);
(2)作EF⊥AB于點(diǎn)F(圖2),猜想EF與已有的哪條線段的一半相等,并加以證明;
(3)在上述條件下,過(guò)點(diǎn)E作CB的平行線交CD于點(diǎn)N,當(dāng)NA與半圓O相切時(shí)(圖3),求∠EOC的正切值.
【答案】分析:(1)連接OD,由直徑對(duì)的圓周角是直角知∠CDO=90°,再切線的判定方法即可判定CD是半圓O的切線;
(2)連接OD、OE,延長(zhǎng)OE交CD于點(diǎn)K,作EG⊥CD于點(diǎn)G,則根據(jù)垂直于同一直線的兩條直線平行知,EG∥OD.CE平分∠DCB,由角的平分線上的點(diǎn)到角的兩邊的距離相等知EG=EF,由直徑對(duì)的圓周角是直角知∠CEO=∠CEK=90°,易得△COE≌△CKE,有OE=KE,即點(diǎn)E是OK的中點(diǎn),所以EG是△ODK的OD邊對(duì)的中位線,則EG是OD的長(zhǎng)的一半,從而得證題設(shè);
(3)、如圖,延長(zhǎng)OE交CD于點(diǎn)K,設(shè)OF=x,EF=y,由2中知,OA=OK=2OE=2y,易得四邊形AFEN是矩形,有NE=AF=OA-OF=2y-x.由于NE∥OC,點(diǎn)E是OK的中點(diǎn),則EN是△OCK的OC對(duì)的中位線,有N是CK的中點(diǎn).所以CO=2NE=2(2y-x),進(jìn)一步得到CF=CO-OF=4y-3x,由Rt△CEF∽R(shí)t△EOF則有EF2=CF•OF,由此得到關(guān)于x,y的方程,變形即可求出進(jìn)而確定tan∠EOC的值.
解答:(1)證明:如圖,連接OD,
則OD為半圓O的半徑
∵OC為半圓M的直徑
∴∠CDO=90°
∴CD是半圓O的切線;

(2)解:猜想:EF=OA.
證明:如圖2,
連接OD、OE,延長(zhǎng)OE交CD于點(diǎn)K,作EG⊥CD于點(diǎn)G,則EG∥OD,
∵CE平分∠DCB,
∴∠OCE=∠KCE.
∵EF⊥AB,
∴EG=EF.
∵OC是半圓M的直徑,E為半圓M上的一點(diǎn),
∴∠CEO=∠CEK=90°.
∵CE為公共邊,
∴△COE≌△CKE.
∴OE=KE.
∵EG∥OD,
∴DG=GK.
∴EF=EG=OD=OA.

(3)解:如圖3,
延長(zhǎng)OE交CD于點(diǎn)K,
設(shè)OF=x,EF=y,則OA=2y,
∵NE∥CB,EF⊥CB,NA切半圓O于點(diǎn)A,
∴四邊形AFEN是矩形,
∴NE=AF=OA-OF=2y-x,
同(2)證法一,得E是OK的中點(diǎn),
∴N是CK的中點(diǎn),
∴CO=2NE=2(2y-x),
∴CF=CO-OF=4y-3x,
∵EF⊥AB,CE⊥EO,
∴Rt△CEF∽R(shí)t△EOF,
∴EF2=CF•OF,即y2=x(4y-3x),
解得,
當(dāng)=3時(shí),tan∠EOC===3,
當(dāng)=1時(shí),點(diǎn)C與點(diǎn)A重合,不符合題意,故舍去,
∴tan∠EOC=3.
點(diǎn)評(píng):本題利用了圓周角定理,直徑對(duì)的圓周角定理是直角,角的平分線的性質(zhì),切線的性質(zhì),矩形的判定和性質(zhì),全等三角形和相似三角形的判定和性質(zhì),三角形中位線的判定和性質(zhì),平行線的判定和性質(zhì),正切的定義求解,利用的知識(shí)比較多,難度比較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年3月九年級(jí)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點(diǎn)A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點(diǎn).
(1)求此拋物線的解析式;
(2)若點(diǎn)D為線段OA的一個(gè)三等分點(diǎn),求直線DC的解析式;
(3)若一個(gè)動(dòng)點(diǎn)P自O(shè)A的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對(duì)稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動(dòng)到點(diǎn)A′求使點(diǎn)P運(yùn)動(dòng)的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點(diǎn)A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點(diǎn).
(1)求此拋物線的解析式;
(2)若點(diǎn)D為線段OA的一個(gè)三等分點(diǎn),求直線DC的解析式;
(3)若一個(gè)動(dòng)點(diǎn)P自O(shè)A的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對(duì)稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動(dòng)到點(diǎn)A′求使點(diǎn)P運(yùn)動(dòng)的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•北京)已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,C是拋物線上一個(gè)動(dòng)點(diǎn)(點(diǎn)C與點(diǎn)A、B不重合),D是OC的中點(diǎn),連接BD并延長(zhǎng),交AC于點(diǎn)E.
(1)用含m的代數(shù)式表示點(diǎn)A、B的坐標(biāo);
(2)求的值;
(3)當(dāng)C、A兩點(diǎn)到y(tǒng)軸的距離相等,且S△CED=時(shí),求拋物線和直線BE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年北京市密云縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2006•北京)已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,C是拋物線上一個(gè)動(dòng)點(diǎn)(點(diǎn)C與點(diǎn)A、B不重合),D是OC的中點(diǎn),連接BD并延長(zhǎng),交AC于點(diǎn)E.
(1)用含m的代數(shù)式表示點(diǎn)A、B的坐標(biāo);
(2)求的值;
(3)當(dāng)C、A兩點(diǎn)到y(tǒng)軸的距離相等,且S△CED=時(shí),求拋物線和直線BE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年北京市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點(diǎn)A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點(diǎn).
(1)求此拋物線的解析式;
(2)若點(diǎn)D為線段OA的一個(gè)三等分點(diǎn),求直線DC的解析式;
(3)若一個(gè)動(dòng)點(diǎn)P自O(shè)A的中點(diǎn)M出發(fā),先到達(dá)x軸上的某點(diǎn)(設(shè)為點(diǎn)E),再到達(dá)拋物線的對(duì)稱軸上某點(diǎn)(設(shè)為點(diǎn)F),最后運(yùn)動(dòng)到點(diǎn)A′求使點(diǎn)P運(yùn)動(dòng)的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案