如圖所示,已知∠A=48°,∠D=25°,F(xiàn)D⊥BC于E,求∠B的度數(shù).

解:∵∠A=48°,∠D=25°,
∴∠BFE=∠A+∠D=73°(三角形外角定理);
又∵FD⊥BC于E,
∴∠BEF=90°;
∴Rt△BFE中,∠B=180°-∠BEF-∠BFE=17°,即∠B=17°.
分析:根據三角形的外角定理求得∠BFE=∠A+∠D;然后在Rt△BFE中利用三角形內角和定理即可求得∠B的度數(shù).
點評:本題考查了三角形內角和定理.三角形的內角和是180°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

52、如圖所示,已知AB=AC,EB=EC,AE的延長線交BC于D,那么圖中的全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖所示,已知⊙O中,弦AB,CD相交于點P,AP=6,BP=2,CP=4,則PD的長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,已知等邊△ABC的兩個頂點的坐標為A(-4,0),B(2,0).
試求:
(1)C點的坐標;
(2)△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖所示,已知EA⊥AB于點A,CD⊥DF于點D,AB∥CD,請判斷EA與DF的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知等邊△ABC的邊長為a,P是△ABC內一點,PD∥AB,PE∥BC,PF∥AC,點D、E、F分別在BC、AC、AB上,猜想:PD+PE+PF=
a
a
,并證明你的猜想.

查看答案和解析>>

同步練習冊答案