【題目】某中學(xué)為了籌備校慶活動(dòng),準(zhǔn)備印制一批校慶紀(jì)念冊(cè).該紀(jì)念冊(cè)分A、B兩種,每?jī)?cè)都需要10張8K大小的紙,其中A紀(jì)念冊(cè)有4張彩色頁和6張黑白頁組成;B紀(jì)念冊(cè)有6張彩色頁和4張黑白頁組成.印制這批紀(jì)念冊(cè)的總費(fèi)用由制版費(fèi)和印制費(fèi)兩部分組成,制版費(fèi)與印數(shù)無關(guān),價(jià)格為:彩色頁300元∕張,黑白頁50元∕張;印制費(fèi)與總印數(shù)的關(guān)系見下表.

總印數(shù)a(單位:千冊(cè))

1≤a<5

5≤a<10

彩色(單位:元∕張)

2.2

2.0

黑白(單位:元∕張)

0.7

0.5


(1)印制這批紀(jì)念冊(cè)的制版費(fèi)為多少元.
(2)若印制A、B兩種紀(jì)念冊(cè)各2千冊(cè),則共需多少費(fèi)用?
(3)如果該校共印制了A、B兩種紀(jì)念冊(cè)6千冊(cè),一共花費(fèi)了75500元,則該校印制了A、B兩種紀(jì)念冊(cè)各多少冊(cè)?

【答案】
(1)解:∵A紀(jì)念冊(cè)有4張彩色頁和6張黑白頁組成;B紀(jì)念冊(cè)有6張彩色頁和4張黑白頁組成,彩色頁300元∕張,黑白頁50元∕張,

∴印制這批紀(jì)念冊(cè)的制版費(fèi)為:4×300+6×50+6×300+4×50=3500(元)


(2)解:∵印制A、B兩種紀(jì)念冊(cè)各2千冊(cè),

∴共需:2000(4×2.2+6×0.7+6×2.2+4×0.7)+3500=61500(元),

答:印制A、B兩種紀(jì)念冊(cè)各2千冊(cè),則共需61500元


(3)解:設(shè)A紀(jì)念冊(cè)x冊(cè),B紀(jì)念冊(cè)y冊(cè),根據(jù)題意得出:

解得:

答:該校印制了A、B兩種紀(jì)念冊(cè)各4000冊(cè),2000冊(cè)


【解析】(1)根據(jù)A紀(jì)念冊(cè)有4張彩色頁和6張黑白頁組成;B紀(jì)念冊(cè)有6張彩色頁和4張黑白頁組成,彩色頁300元∕張,黑白頁50元∕張,求其和即可;(2)根據(jù)題意可得等量關(guān)系:各印一冊(cè)A,B種紀(jì)念冊(cè)的印刷費(fèi)用×2000+制版費(fèi)=總費(fèi)用,再算出結(jié)果即可;(3)根據(jù)(2)中計(jì)算方法,得出關(guān)于A、B兩種紀(jì)念冊(cè)6千冊(cè),一共花費(fèi)了75500元的方程組求出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知對(duì)任意有理數(shù)a、b,關(guān)于x、y的二元一次方程(a﹣b)x﹣(a+b)y=a+b有一組公共解,則公共解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x﹣3y=﹣3,則5﹣2x+6y的值是(
A.﹣1
B.2
C.8
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬安縣開發(fā)區(qū)某電子電路板廠到井岡山大學(xué)從2014年應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專業(yè)知識(shí)、英語水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測(cè)試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按5:3:2的比例記入每人的最后總分,有4位應(yīng)聘者的得分如表.

得分
應(yīng)聘人
項(xiàng)目

專業(yè)知識(shí)

英語水平

參加社會(huì)實(shí)踐與
社團(tuán)活動(dòng)等

85

85

90

85

85

70

80

90

70

90

90

50


(1)分別算出4位應(yīng)聘者的總分;
(2)表中四人“專業(yè)知識(shí)”的平均分為85分,方差為12.5,四人“英語水平”的平均分為87.5分,方差為6.25,請(qǐng)你求出四人“參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等”的平均分及方差;
(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn),求證:

(1)△ACE≌△BCD;
(2)AD2+DB2=DE2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1C2上的任一點(diǎn). 當(dāng)a x b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個(gè)函數(shù)在a x b上是“相鄰函數(shù)”,否則稱它們?cè)?/span>a x b上是“非相鄰函數(shù)”.

例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.

(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;

(2)若函數(shù)y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;

(3)若函數(shù)y =y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AD⊥BC于D,EF⊥BC于F,∠3=∠E,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A3,0),B10)兩點(diǎn),與y軸交于點(diǎn)C

1)求該二次函數(shù)的解析式;

2)設(shè)該拋物線的頂點(diǎn)為D,求ACD的面積;

3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿ABAC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知∠OEB=130°,∠FOD=25°,OF平分∠EOD,試說明AB∥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案