如圖,在平面直角坐標(biāo)系中,點A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上一動點,連結(jié)OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸、直線OB于點E、F,點E為垂足,連結(jié)CF.
1.當(dāng)∠AOB=30°時,求弧AB的長度;
2.當(dāng)DE=8時,求線段EF的長
3.在點B運(yùn)動過程中,當(dāng)交點E在O,C之間時,是否存在以點E、C、F為頂點的三角形與△AOB相似,若存在,請求出此時點E的坐標(biāo);若不存在,
請說明理由.
1.連結(jié)BC,
∵A(10,0), ∴OA=10 ,CA=5,
∵∠AOB=30°,
∴∠ACB=2∠AOB=60°,
∴弧AB的長=;
2.連結(jié)OD,
∵OA是⊙C直徑, ∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分線,
∴OD=OA=10,
在Rt△ODE中,
OE=,
∴AE=AO-OE=10-6=4,
由 ∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
∴,即,∴EF=3;…
3.設(shè)OE=x,當(dāng)交點E在O,C之間時,由以點E、C、F
為頂點的三角形與△AOB相似,
有∠ECF=∠BOA或∠ECF=∠OAB,
①當(dāng)∠ECF=∠BOA時,此時△OCF為等腰三角形,點E為OC
中點,即OE=,∴E1(,0);(3分)
②當(dāng)∠ECF=∠OAB時,有CE=5-x, AE=10-x,
∴CF∥AB,有CF=,
∵△ECF∽△EAD,
∴,即,解得:,
∴E2(,0);
解析:略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com