(2005•綿陽)如圖,梯形ABCD中,AD∥BC,∠ABD=∠C,AB=2,AD=1.6,CD=3.
(1)求BD,BC的長;
(2)畫出△BCD的外接圓(不寫畫法,保留作圖痕跡),并指出AD是否為該圓的切線;
(3)計(jì)算tanC的值.

【答案】分析:(1)因?yàn)锳D∥BC可知∠ADB=∠DBC又∠ABD=∠C,易證△ABD∽△DCB,繼而求出BD,BC的長
(2)要求tanC的值,須作直角三角形,因此過D作DE⊥BC于E,求出DE、CE長即可
解答:解:(1)∵AD∥BC,
∴∠ADB=∠DBC,
而∠ABD=∠C,
∴△ABD∽△DCB,
,

∴BD=2.4,BC=3.6.

(2)△BCD的外接圓如右圖所示,AD不是其外接圓的切線.

(3)方法一:
過D作DE⊥BC于E.
設(shè)CE=x,則BE=3.6-x.
根據(jù)勾股定理,得BD2-BE2=DE2=CD2-CE2,
即2.42-(3.6-x)2=DE2=32-x2,
解得x=,DE=
∴在Rt△CDE中,有tanC=

方法二:
過D作DF∥AB交BC于F,則ABFD是平行四邊形,
所以DF=2,CF=BC-BF=3.6-1.6=2,
∴△CDF是等腰三角形.
過F作FG⊥CD于G,則FG2=CF2-(CD)2=,F(xiàn)G=,
∴在Rt△CFG中,有tanC=
點(diǎn)評(píng):考查相似三角形的判定和性質(zhì)、勾股定理性質(zhì)及三角函數(shù)定義的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年四川省綿陽市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•綿陽)如圖,已知BC為等腰三角形紙片ABC的底邊,AD⊥BC,AD=BC.將此三角形紙片沿AD剪開,得到兩個(gè)三角形,若把這兩個(gè)三角形拼成一個(gè)平面四邊形,則能拼出互不全等的四邊形的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省綿陽市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•綿陽)如圖,在△ABC中,∠C=90°,AC=8,AB=10,點(diǎn)P在AC上,AP=2,若⊙O的圓心在線段BP上,且⊙O與AB、AC都相切,則⊙O的半徑是( )

A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省綿陽市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•綿陽)如圖,寬為50cm的矩形圖案由10個(gè)全等的小長方形拼成,其中一個(gè)小長方形的面積為( )

A.400cm2
B.500cm2
C.600cm2
D.4000cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•綿陽)如圖,在平行四邊形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一動(dòng)點(diǎn)P從A出發(fā),以每秒1cm的速度沿A→B→C的路線勻速運(yùn)動(dòng),過點(diǎn)P作直線PM,使PM⊥AD.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)2秒時(shí),設(shè)直線PM與AD相交于點(diǎn)E,求△APE的面積;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)2秒時(shí),另一動(dòng)點(diǎn)Q也從A出發(fā)沿A→B→C的路線運(yùn)動(dòng),且在AB上以每秒1cm的速度勻速運(yùn)動(dòng),在BC上以每秒2cm的速度勻速運(yùn)動(dòng).過Q作直線QN,使QN∥PM.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤10),直線PM與QN截平行四邊形ABCD所得圖形的面積為Scm2
①求S關(guān)于t的函數(shù)關(guān)系式;
②(附加題)求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•綿陽)如圖①,分別以直角三角形ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1,S2,S3表示,則不難證明S1=S2+S3
(1)如圖②,分別以直角三角形ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1,S2,S3表示,那么S1,S2,S3之間有什么關(guān)系;(不必證明)
(2)如圖③,分別以直角三角形ABC三邊為邊向外作三個(gè)正三角形,其面積分別用S1、S2、S3表示,請(qǐng)你確定S1,S2,S3之間的關(guān)系并加以證明;
(3)若分別以直角三角形ABC三邊為邊向外作三個(gè)一般三角形,其面積分別用S1,S2,S3表示,為使S1,S2,S3之間仍具有與(2)相同的關(guān)系,所作三角形應(yīng)滿足什么條件證明你的結(jié)論;
(4)類比(1),(2),(3)的結(jié)論,請(qǐng)你總結(jié)出一個(gè)更具一般意義的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案