|
|
如圖,在□ABCD中,E、F分別是邊AD、BC的中點(diǎn),AC分別交BE、DF于G、H,給出下列結(jié)論:
①△ABE≌△CDF;
②AG=GH=HC;
③;
④S△ABE=2S△AGB.其中正確的結(jié)論有________個(gè).
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
如圖所示,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.下列條件不能判定這個(gè)四邊形是平行四邊形的是
|
[ ] |
A. |
AB∥DC,AD∥BC
|
B. |
AB=DC,AD=BC
|
C. |
AO=CO,BO=DO
|
D. |
AB∥DC,AD=BC
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
如圖,在菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,E為BC的中點(diǎn),則下列式子中一定成立的是
|
[ ] |
A. |
AC=2OE
|
B. |
BC=2OE
|
C. |
AD=OE
|
D. |
OB=OE
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交△ACB的外角∠ACD的平分線于點(diǎn)F.
(1)求證:OE=OF.
(2)若CE=12,CF=5,求OC的長(zhǎng).
(3)連接AE、AF,當(dāng)點(diǎn)O在AC邊上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
若順次連接四邊形ABCD各邊的中點(diǎn)所得的四邊形是矩形,則四邊形ABCD一定是
|
[ ] |
A. |
矩形
|
B. |
菱形
|
C. |
對(duì)角線互相垂直的四邊形
|
D. |
對(duì)角線相等的四邊形
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
如圖,將一塊邊長(zhǎng)為12的正方形紙片ABCD的頂點(diǎn)A折疊至DC邊上的點(diǎn)E,使DE=5,折痕為PQ,則PQ的長(zhǎng)為_(kāi)_______.
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
如圖(1),在正方形ABCD中,E,F(xiàn)分別是邊AD、DC上的點(diǎn),且AF⊥BE.
(1)求證:AF=BE.
(2)如圖(2),在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQ.MP與NQ是否相等?請(qǐng)說(shuō)明理由.
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
計(jì)算:.
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:新人教版(2012) 八年級(jí)下
題型:
|
|
如圖,梯形的上底長(zhǎng)為x,下底長(zhǎng)為15,高為9,寫(xiě)出梯形的面積S與上底x之間的關(guān)系式,并指出其中的常量和變量、自變量和因變量.
|
|
|
查看答案和解析>>