精英家教網 > 初中數學 > 題目詳情
已知線段m,n,p,q的長度滿足等式mn=pq,將它改成比例式的形式,錯誤的是( )
A.=
B.=
C.=
D.=
【答案】分析:根據比例的基本性質:兩外項之積等于兩內項之積.對選項一一分析,選出正確答案.
解答:解:A、兩邊同時乘以最簡公分母pn得mn=pq,與原式相等,正確;
B、兩邊同時乘以最簡公分母pn得mq=np,與原式不相等,錯誤;
C、兩邊同時乘以最簡公分母mq得mn=pq,與原式相等,正確;
D、兩邊同時乘以最簡公分母mp得mn=pq,與原式相等,正確;
故選B.
點評:解答此題應把每一個選項乘以最簡公分母后與原式相比較看是否相同.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

16、已知線段AB=8cm,在直線AB上畫線BC,使它等于3cm,則線段AC等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

點O是線段CD的中點,而點P將CD分為兩部分,且CP:PD=
5
7
2
7
,已知線段CD=28cm,求OP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

19、已知線段AB,請你在圖1中畫一個以AB為邊的等邊三角形,在圖2中畫出一個以AB為斜邊的直角三角形ABC.(要求用尺規(guī)作圖,保留作圖痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

25、已知線段AB,線段a和線段b,分別以線段AB、a、b的長為邊長作△ABC,在圖1中畫出所有的C點(保留作圖痕跡)
結論:
△ABC
即為所求.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2011•石家莊二模)閱讀材料:
我們將能完全覆蓋平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.
例如:線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
操作探究:
(1)如圖1:已知線段AB與其外一點C,作過A、B、C三點的最小覆蓋圓;(不寫作法,保留作圖痕跡)
(2)邊長為1cm的正方形的最小覆蓋圓的半徑是
2
2
2
2
cm;
如圖2,邊長為1cm的兩個正方形并列在一起,則其最小覆蓋圓的半徑是
5
2
5
2
cm;
如圖3,半徑為1cm的兩個圓外切,則其最小覆蓋圓的半徑是
2
2
cm.
聯(lián)想拓展:
⊙O1的半徑為8,⊙O2,⊙O3的半徑均為5.
(1)當⊙O1、⊙O2、⊙O3兩兩外切時(如圖4),則其最小覆蓋圓的半徑是
40
3
40
3

(2)當⊙O1、⊙O2、⊙O3兩兩相切時,(1)中的結論還成立嗎?如果不成立,則其最小覆蓋圓的半徑是
13
13
,并作出示意圖.

查看答案和解析>>

同步練習冊答案