如下圖所示,已知等腰梯形ABCD,AD∥BC,AD=2,BC=6,AB=DC=,若動直線l垂直于BC,且從經(jīng)過點B的位置向右平移,直至經(jīng)過點C的位置停止,設(shè)掃過的陰影部分的面積為S,BP為x,則S關(guān)于x的函數(shù)關(guān)系式是          。


。

【考點】動線問題的函數(shù)圖象,等腰梯形的性質(zhì),等腰直角三角形的判定和性質(zhì),分類思想的應(yīng)用。

【分析】如圖1,分別過點A,D作BC的垂線,垂足為E,F(xiàn),

①如圖1,當直線l經(jīng)過BA段時,0≤x≤2,BP=QP=x,

。

②如圖2,當直線l經(jīng)過AD段時,2<x≤4,BP=QP=x,AQ=EP=,

。

③如圖3,當直線l經(jīng)過DC段時,4<x≤6,BP =x,F(xiàn)C=QP=,

綜上所述,S關(guān)于x的函數(shù)關(guān)系式是


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


 如圖,矩形ABCD的BC邊在直線l上,AD=5,AB=3, P為直線l上的點,且△AEP是腰長為5的等腰三角形,則BP=        

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C的坐標為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應(yīng)點為點E,當△ADE是等腰直角三角形時,m=         ,點E的坐標為          ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.

(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉(zhuǎn)45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論;

(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設(shè)為正方形PQMN,如圖3,設(shè)正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;

(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉(zhuǎn)90°得到正方形OHKL,如圖4,求△ACK的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,動點P從點A出發(fā),沿折線AD-DC-CB以每秒1個單位長的速度運動到點B停止。設(shè)運動時間為t秒,y = SEPB,則y與t的函數(shù)圖象大致是【    】

  A.     B.     C.     D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖1,在平面直角坐標系中,直線AB與軸交于點A,與軸交于點B,與直線OC:交于點C.

(1)若直線AB解析式為,

①求點C的坐標;

②求△OAC的面積.

(2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA=4,P、Q分別為線段OA、OE上的動點,連結(jié)AQ與PQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某數(shù)學興趣小組對線段上的動點問題進行探究,已知AB=8.

問題思考:

如圖1,點P為線段AB上的一個動點,分別以AP、BP為邊在同側(cè)作正方形APDC與正方形PBFE.

(1)在點P運動時,這兩個正方形面積之和是定值嗎?如果時求出;若不是,求出這兩個正方形面積之和的最小值.

(2)分別連接AD、DF、AF,AF交DP于點A,當點P運動時,在△APK、△ADK、△DFK中,是否存在兩個面積始終相等的三角形?請說明理由.

問題拓展:

(3)如圖2,以AB為邊作正方形ABCD,動點P、Q在正方形ABCD的邊上運動,且PQ=8.若點P從點A出發(fā),沿A→B→C→D的線路,向D點運動,求點P從A到D的運動過程中,PQ的中點O所經(jīng)過的路徑的長。

 (4)如圖(3),在“問題思考”中,若點M、N是線段AB上的兩點,且AM=BM=1,點G、H分別是邊CD、EF的中點.請直接寫出點P從M到N的運動過程中,GH的中點O所經(jīng)過的路徑的長及OM+OB的最小值.

    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


兩個全等的梯形紙片如圖(1)擺放,將梯形紙片ABCD沿上底AD方向向右平移得到圖(2).已知AD=4,BC=8,若陰影部分的面積等于四邊形A′B′BA的面積,則圖(2)中平移距離A′A=       .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


中,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動。過點P作PE∥BC交AD于點E,連結(jié)EQ。設(shè)動點運動時間為x秒。

(1)用含x的代數(shù)式表示AE、DE的長度;

(2)當點Q在BD(不包括點B、D)上移動時,設(shè)的面積為,求與月份的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)當為何值時,為直角三角形。

查看答案和解析>>

同步練習冊答案