如圖,已知二次函數(shù)的圖象與軸相交于兩個(gè)不同的點(diǎn)、,與軸的交點(diǎn)為.設(shè)的外接圓的圓心為點(diǎn).
(1)求與軸的另一個(gè)交點(diǎn)D的坐標(biāo);
(2)如果恰好為的直徑,且的面積等于,求和的值.
(1)(0,1);(2)
【解析】
試題分析:(1)令x=0,代入拋物線解析式,即求得點(diǎn)C的坐標(biāo).由求根公式求得點(diǎn)A、B的橫坐標(biāo),得到點(diǎn)A、B的橫坐標(biāo)的和與積,由相交弦定理求得OD的值,從而得到點(diǎn)D的坐標(biāo).
(2)當(dāng)AB又恰好為⊙P的直徑,由垂徑定理知,點(diǎn)C與點(diǎn)D關(guān)于x軸對(duì)稱,故得到點(diǎn)C的坐標(biāo)及k的值.根據(jù)一元二次方程的根與系數(shù)的關(guān)系式表示出AB線段的長(zhǎng),由三角形的面積公式表示出△ABC的面積,可求得m的值.
(1)易求得點(diǎn)的坐標(biāo)為
由題設(shè)可知是方程即 的兩根,
所以,
所
∵⊙P與軸的另一個(gè)交點(diǎn)為D,由于AB、CD是⊙P的兩條相交弦,設(shè)它們的交點(diǎn)為點(diǎn)O,連結(jié)DB,
∴△AOC∽△DOC,則
由題意知點(diǎn)在軸的負(fù)半軸上,從而點(diǎn)D在軸的正半軸上,
所以點(diǎn)D的坐標(biāo)為(0,1);
(2)因?yàn)锳B⊥CD, AB又恰好為⊙P的直徑,則C、D關(guān)于點(diǎn)O對(duì)稱,
所以點(diǎn)的坐標(biāo)為,即
又,
所以解得
考點(diǎn):一元二次方程的求根公式,根與系數(shù)的關(guān)系,相交弦定理,垂徑定理,三角形的面積公式
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性強(qiáng),難度較大,是中考常見題,如何表示OD及AB的長(zhǎng)是本題中解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 |
7 |
6 |
7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com