【題目】將立方體紙盒沿某些棱剪開,且使六個面連在一起,然后鋪平,可以得到其表面展開圖的平面圖形.

1)以下兩個方格圖中的陰影部分能表示立方體表面展開圖的是   (填AB).

2)在以下方格圖中,畫一個與(1)中呈現(xiàn)的陰影部分不相似(包括不全等)的立方體表面展開圖.(用陰影表示)

3)如圖中的實線是立方體紙盒的剪裁線,請將其表面展開圖畫在右圖的方格圖中.(用陰影表示)

【答案】1A;(2)見解析;(3)見解析

【解析】

1)有字格的展開圖都不能圍成正方體,據(jù)此可排除B,從而得出答案;

2)可利用“1、32”作圖(答案不唯一);

3)根據(jù)裁剪線裁剪,再展開.

解:(1)兩個方格圖中的陰影部分能表示立方體表面展開圖的是A,

故答案為:A

2)立方體表面展開圖如圖所示:

3)將其表面展開圖畫在方格圖中如圖所示:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A、B兩點,軸交于點C,拋物線的對稱軸交軸于點D,已知點A的坐標為(-1,0),C的坐標為(0,2)

(1)求拋物線的解析式;

(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AGDBCB的延長線于G.

(1)求證:四邊形AGBD為平行四邊形;

(2)若四邊形AGBD是矩形,則四邊形BEDF是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A3,2)在反比例函數(shù)yx0)的圖象上,點BOA的延長線上,BCx軸,垂足為CBC與反比例函數(shù)的圖象相交于點D,連接AC,AD

1)求該反比例函數(shù)的解析式;

2)若SACD,設(shè)點C的坐標為(a,0),

求點D的坐標;

求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=圖象在第一象限上的一點,連結(jié)AO并延長交圖象的另一分支于點B,延長BA至點C,過點CCDx軸,垂足為D,交反比例函數(shù)圖象于點E.若,△BDC的面積為6,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊的邊長為3,在邊上取點,使,連接,以為一邊作等邊,連接,則線段的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,△EFG均是邊長為2的等邊三角形,點D是邊BC、EF的中點,直線AG、FC相交于點M.當△EFG繞點D旋轉(zhuǎn)時,線段BM長的最小值是( )

A.2-B.+1C.D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家騎車上學(xué),先上坡到達A地后再下坡到達學(xué)校,所用的時間與路程如圖所示.如果返回時,上下坡的速度仍然保持不變,那么他從學(xué);氐郊倚枰臅r間是( .

A.8.6分鐘B.9分鐘C.12分鐘D.16分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,將二次函數(shù)y=a(a0)的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與x軸交于點A、B(A在點B的左側(cè)),OA=1,經(jīng)過點A的一次函數(shù)()的圖象與y軸正半軸交于點C,且與拋物線的另一個交點為D,△ABD的面積為5

(1)求拋物線和一次函數(shù)的解析式;

(2)拋物線上的動點E在一次函數(shù)的圖象下方,求△ACE面積的最大值,并求出此時點E的坐標;

查看答案和解析>>

同步練習(xí)冊答案