已知直線分別交軸、軸于A,B兩點,線段OA上有一動點P由原點O向點A運動,速度為每秒1個單位長度,過點P軸的垂線交直線AB于點C,設(shè)運動時間為秒.線段OA上另有一動點Q由點A向點O運動,它與點P以相同速度同時出發(fā),當點P到達點A時兩點同時停止運動(如圖).

(1)直接寫出=1秒時CQ兩點的坐標;

(2)若以QCA為頂點的三角形與△AOB相似,求的值.

 


(1)①C(1,2),Q(2,0).             …………………………2分

②由題意得:Pt,0),Ct,-t+3),Q(3-t,0),

分兩種情形討論:

情形一:當△AQC∽AOB時,∠AQCAOB90°,∴CQOA.……………4分

CPOA,∴點P與點Q重合,OQOP,即3-tt,∴t1.5.………………6分

情形二:當△ACQ∽AOB時,∠ACQAOB90°,∵OAOB=3,∴△AOB是等腰直角三角形,∴△ACQ是等腰直角三角形.      …………………………8分

CPOA,∴AQ=2CP,即t =2(-t +3),∴t2. …………………………10分

∴滿足條件的t的值是1.5秒或2秒.        

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標為______;點D的坐標為______.并求出拋物線的解析式;
(2)若正方形以每秒個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣西中考數(shù)學(xué)試卷(樣卷)(解析版) 題型:解答題

如圖,已知直線分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標為______;點D的坐標為______.并求出拋物線的解析式;
(2)若正方形以每秒個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考適應(yīng)性考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

如圖,已知直線分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標為______;點D的坐標為______.并求出拋物線的解析式;
(2)若正方形以每秒個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市松江初三二模數(shù)學(xué)試卷(解析版) 題型:解答題

   已知直線分別與軸、軸交于點、,拋物線經(jīng)過點、

(1)求該拋物線的表達式,并寫出該拋物線的對稱軸和頂點坐標;

(2)記該拋物線的對稱軸為直線,點關(guān)于直線的對稱點為,若點軸的正半軸上,且四邊形為梯形.

① 求點的坐標;

② 將此拋物線向右平移,平移后拋物線的頂點為,其對稱軸與直線交于點,若tan =,求四邊形的面積.

 

查看答案和解析>>

同步練習冊答案