【題目】已知在四邊形中,,,連接,若,,則的長度為________.
【答案】
【解析】
根據(jù)等邊三角形的判定定理得到△ABC是等邊三角形,求出∠BAC=60°,過點C作CE⊥AD于E,解直角三角形得到DE=,求得,根據(jù)直角三角形的性質(zhì)得到∠CAD=30°,求得∠ACE=60°,∠BAD=90°,得到∠ACD=90°,根據(jù)勾股定理即可得到結(jié)論.
∵,,
∴△ABC是等邊三角形,
∴∠BAC=60°,
過點C作CE⊥AD于E,
∴∠AEC=∠CED=90°,
∵∠ADC=60°,
∴∠DCE=30°,
∵CD=2,
∴DE=,
∴,
∵AC=,
∴CE=,
∴∠CAD=30°,
∴∠ACE=60°,∠BAD=90°,
∴∠ACD=90°,
∴AD=2CD=4,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=8,以頂點A為圓心作半徑為r的圓,若要求另外三個頂點至少有一個在圓內(nèi),且至少有一個在圓外,則r的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)開展了“行車安全,方便居民”的活動,對地下車庫作了改進.如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時點B、C、D在同一直線上).
(1)求這個車庫的高度AB;
(2)求斜坡改進后的起點D與原起點C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的一個動點,延長BP到點C,使PC=PB,D是AC的中點,連接PD,PO.
(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為_______,此時BD=_______;
②連接OD,當(dāng)∠PBA的度數(shù)為________時,四邊形BPDO是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時,與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個根;③.其中,正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,以AB為直徑的⊙O交AC邊于點DD,點E在BC上,連結(jié)BD,DE,∠CDE=∠ABD
(1)證明:DE是⊙O的切線;
(2)若BD=24,sin∠CDE=,求圓⊙O的半徑和AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,經(jīng)過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.
(1)a 0, 0(填“>”或“<”);
(2)若該拋物線關(guān)于直線x=2對稱,求拋物線的函數(shù)表達式;
(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A在x軸正半軸上,點B在y軸正半軸上,O為坐標(biāo)原點,OA=OB=1,過點O作OM1⊥AB于點M1;過點M1作M1A1⊥OA于點A1:過點A1作A1M2⊥AB于點M2;過點M2作M2A2⊥OA于點A2…以此類推,點M2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商城某專賣店銷售每件成本為40元的商品,從銷售情況中隨機抽取一些情況制成統(tǒng)計表如下:(假設(shè)當(dāng)天定的售價是不變的,且每天銷售情況均服從這種規(guī)律)
每件銷售價(元) | 50 | 60 | 70 | 75 | 80 | 85 | …… |
每天售出件數(shù) | 300 | 240 | 180 | 150 | 120 | 90 | …… |
(1)觀察這些數(shù)據(jù),找出每天售出件數(shù)y與每件售價x(元)之間的函數(shù)關(guān)系,并寫出該函數(shù)關(guān)系式;
(2)該店原有兩名營業(yè)員,但當(dāng)每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè),設(shè)營業(yè)員每人每天工資為40元,求每件產(chǎn)品定價多少元,才能使純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其他開支不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com