【題目】RtABC中,∠CRt∠,∠A=3B10°,則∠B等于_______度.

【答案】20

【解析】

根據(jù)直角三角形兩銳角互余列方程求解即可.

∵∠C=Rt∠,

∴∠A+B=90°

∵∠A=3B10°,

3B10°+B=90°

解得∠B=20°

故答案為:20

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年興義市加大中職教育投入力度,取得了良好的社會(huì)效果。某校隨機(jī)調(diào)查了九年級(jí)a名學(xué)生升學(xué)意向,并根據(jù)調(diào)查結(jié)果繪制如圖的兩幅不完整的統(tǒng)計(jì)圖。

請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:

(1)a= ;

(2)扇形統(tǒng)計(jì)圖中,“職高”對(duì)應(yīng)的扇形的圓心角α=

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該校九年級(jí)有學(xué)生900名,估計(jì)該校共有多少名畢業(yè)生的升學(xué)意向是職高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)在一次九年級(jí)數(shù)學(xué)做了檢測(cè)中,有一道滿分8分的解答題,按評(píng)分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機(jī)抽取一部分,通過(guò)分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

1)填空:a=  ,b=  ,并把條形統(tǒng)計(jì)圖補(bǔ)全;

2)請(qǐng)估計(jì)該地區(qū)此題得滿分(即8分)的學(xué)生人數(shù);

3)已知難度系數(shù)的計(jì)算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來(lái)說(shuō),根據(jù)試題的難度系數(shù)可將試題分為以下三類:當(dāng)0L≤0.4時(shí),此題為難題;當(dāng)0.4L≤0.7時(shí),此題為中等難度試題;當(dāng)0.7L1時(shí),此題為容易題.試問(wèn)此題對(duì)于該地區(qū)的九年級(jí)學(xué)生來(lái)說(shuō)屬于哪一類?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組的兩個(gè)數(shù)中,運(yùn)算后結(jié)果相等的是(
A.23和32
B.﹣53和(﹣5)3??
C.﹣|﹣5|和﹣(﹣5)
D.(﹣ 3和﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱.

(1)求拋物線的解析式,并直接寫出點(diǎn)D的坐標(biāo);

(2)如圖1,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿A→B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng).以AP為邊作等邊△APQ(點(diǎn)Q在x軸上方).設(shè)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,△APQ與四邊形AOCD重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;

(3)如圖2,連接AC,在第二象限內(nèi)存在點(diǎn)M,使得以M、O、A為頂點(diǎn)的三角形與△AOC相似.請(qǐng)直接寫出所有符合條件的點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a3倍與b的差的平方,用代數(shù)式表示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】mn,則下列不等式中成立的是( )

A.m+3<n+3B.3m<3nC.-3m>-3nD.m-3>n-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(diǎn).
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要了解八年級(jí)學(xué)生身高在某一范圍內(nèi)學(xué)生所占比例,需知道相應(yīng)的(  )

A.平均數(shù) B.眾數(shù) C.中位數(shù) D.頻數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案