甲船從A港出發(fā)順流勻速駛向B港,行至某處,發(fā)現(xiàn)船上一救生圈不知何時落入水中,立刻原路返回,找到救生圈后,繼續(xù)順流駛向B港.乙船從B港出發(fā)逆流勻速駛向A港.已知救生圈漂流的速度和水流速度相同;甲、乙兩船在靜水中的速度相同.甲、乙兩船到A港的距離y1、y2(km)與行駛時間x(h)之間的函數(shù)圖象如圖所示.
(1)寫出乙船在逆流中行駛的速度(2)求甲船在逆流中行駛的路程.
(3)求甲船到A港的距離y1與行駛時間x之間的函數(shù)關(guān)系式
(4)求救生圈落入水中時,甲船到A港的距離.
【參考公式:船順流航行的速度船在靜水中航行的速度+水流速度,船逆流航行的速度船在靜水中航行的速度水流速度.】
【解析】(1)由圖可知,乙在4小時內(nèi)走了24千米,根據(jù)路程=速度×時間,可得出其速度.
(2)由圖可知2到2.5小時的過程中甲是逆流而行,這0.5小時內(nèi)甲的速度何乙的速度相同,因此可得出甲走的路程
(3)要求距離首先要求出順流的速度,可根據(jù)甲在0至2小時走的路程-2至2.5小時的路程+2.5至3.5小時的路程=24千米,求出順流的速度,然后根據(jù)不同的x的范圍,用待定系數(shù)法求出y與x的函數(shù)關(guān)系式.
(4)根據(jù)(3)求出的順流的速度可求出水流的速度,然后根據(jù)船追救生圈的距離+救生圈順水的距離=二者在掉落時間到追及時間拉開的距離.求出自變量的值,進而求出甲船到A港的距離.
解:(1)乙船在逆流中行駛的速度為6km/h. ………………………2分
(2)甲船在逆流中行駛的路程為(km). ………………………4分
(3)設(shè)甲船順流的速度為km/h,
由圖象得.
解得a9. ………………………6分
當0≤x≤2時,. ………………………7分
當2≤x≤2.5時,設(shè).
把,代入,得.
∴.………………………8分
當2.5≤x≤3.5時,設(shè).
把,代入,得.
∴. ………………………9分
(4)水流速度為(km/h).
設(shè)甲船從A港航行x小時救生圈掉落水中.
根據(jù)題意,得.
解得..
即救生圈落水時甲船到A港的距離為13.5 km. ………………………12分
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆山東省東阿縣姚寨中學九年級中考數(shù)學試卷1(帶解析) 題型:解答題
甲船從A港出發(fā)順流勻速駛向B港,行至某處,發(fā)現(xiàn)船上一救生圈不知何時落入水中,立刻原路返回,找到救生圈后,繼續(xù)順流駛向B港.乙船從B港出發(fā)逆流勻速駛向A港.已知救生圈漂流的速度和水流速度相同;甲、乙兩船在靜水中的速度相同.甲、乙兩船到A港的距離y1、y2(km)與行駛時間x(h)之間的函數(shù)圖象如圖所示.
(1)寫出乙船在逆流中行駛的速度.
(2)求甲船在逆流中行駛的路程.
(3)求甲船到A港的距離y1與行駛時間x之間的函數(shù)關(guān)系式.
(4)求救生圈落入水中時,甲船到A港的距離.
【參考公式:船順流航行的速度船在靜水中航行的速度+水流速度,船逆流航行的速度船在靜水中航行的速度水流速度.】
查看答案和解析>>
科目:初中數(shù)學 來源:2012年江蘇省泰州市海陵區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com