【題目】如圖,,, ,,都是等腰直角三角形,其中點(diǎn), ,,軸上,點(diǎn), ,,在直線上,已知,則的長為______________

【答案】

【解析】

根據(jù)一次函數(shù)的性質(zhì)可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根據(jù)等腰直角三角形斜邊上的高等于斜邊的一半求出OA3,同理求出OA4,然后根據(jù)變化規(guī)律寫出即可.

解:∵直線為y=x,

∴∠B1OA1=45°,

∵△A2B2A3,

B2A2x軸,∠B2A3A2=45°,

∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,

OA3=2A2B2=2OA2=2×2=4,

同理可求OA4=2OA3=2×4=23,

…,

所以,OA2020=22019

故答案為:22019;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銅梁永輝商場今年二月份以每桶40元的單價(jià)購進(jìn)1000桶甲、乙兩種食用油,然后以甲種食用油每桶75元、乙桶食用油每桶60元的價(jià)格售完,共獲利29000元.

1)求該商場分別購進(jìn)甲、乙兩種食用油多少桶?

2)為了增加銷售量,獲得最大利潤,根據(jù)銷售情況和市場分析,在進(jìn)價(jià)不變的情況下該經(jīng)銷商決定調(diào)整價(jià)格,將甲種食用油的價(jià)格在二月份的基礎(chǔ)上下調(diào)20%,乙種食用油的價(jià)格上漲a%,但甲的銷售量還是較二月下降了a%,而乙的銷售量卻上升了25%,結(jié)果三月份的銷售額比二月份增加了1000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù) ykxb 的圖像與反比例函數(shù) y的圖像交于 A(-2,1),B1,n)兩點(diǎn),

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)求使一次函數(shù)的值大于反比例函數(shù)的值時(shí) x 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,分別為,邊上的高,連接,過點(diǎn)與點(diǎn)中點(diǎn),連接

1)如圖,若點(diǎn)與點(diǎn)重合,求證:;

2)如圖,請寫出之間的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AEABAFAC

求證:(1ECBF;

2ECBF;

3)連接AM,求證:AM平分∠EMF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABC=90°,AB=BC=4,點(diǎn)M是線段BC的中點(diǎn),點(diǎn)N在射線MB上,連接AN,平移△ABN,使點(diǎn)N移動(dòng)到點(diǎn)M,得到△DEM(點(diǎn)D與點(diǎn)A對應(yīng),點(diǎn)E與點(diǎn)B對應(yīng)),DMAC于點(diǎn)P

(1)若點(diǎn)N是線段MB的中點(diǎn),如圖1.

依題意補(bǔ)全圖1;

DP的長;

(2)若點(diǎn)N在線段MB的延長線上射線DM與射線AB交于點(diǎn)Q,MQ=DP,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象如圖所示,則結(jié)論:①兩函數(shù)圖象的交點(diǎn)的坐標(biāo)為(2,2);②當(dāng)x>2時(shí),;③當(dāng)x=1時(shí),BC=3;④當(dāng)x逐漸增大時(shí),隨著的增大而增大,隨著的增大而減。畡t其中正確結(jié)論的序號是( )

A.①②B.①③C.②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸、軸分別交于點(diǎn),,將點(diǎn)繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)得點(diǎn),解答下列問題:

1)求出點(diǎn)的坐標(biāo),并判斷點(diǎn)是否在直線l上;

2)若點(diǎn)x軸上,坐標(biāo)平面內(nèi)是否存在點(diǎn),使得以、、為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案