【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋.

【答案】(1) ;(2) 不公平

【解析】試題分析:1)利用列表法得到所有可能出現(xiàn)的結(jié)果,根據(jù)概率公式計(jì)算即可;

2)分別求出甲、乙獲勝的概率,比較即可.

試題解析:(1)所有可能出現(xiàn)的結(jié)果如圖:

從表格可以看出,總共有9種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中兩人抽取相同數(shù)字的結(jié)果有3所以兩人抽取相同數(shù)字的概率為: ;

2)不公平,

從表格可以看出,兩人抽取數(shù)字和為2的倍數(shù)有5種,兩人抽取數(shù)字和為5的倍數(shù)有3種,

所以甲獲勝的概率為: ,乙獲勝的概率為: .

>

∴甲獲勝的概率大,游戲不公平。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(jí)某班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

1)求出wx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?并求出最大利潤;

3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和為1080°,則這個(gè)多邊形的邊數(shù)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】判定兩角相等,不正確的是(

A. 對(duì)頂角相等 B. 兩直線平行,同位角相等.

C. ∵∠1=∠2∠2=∠3,∴∠1=∠3 D. 兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米

參考數(shù)據(jù):sin48°≈,tan48°≈,sin64°≈,tan64°≈2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CAB的延長線上,CDO相切于點(diǎn)DCEAD,交AD的延長線于點(diǎn)E

1)求證:BDC=A;

2)若CE=4,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.

(1)求證:AE=BF;

(2)連接GB,EF,求證:GB∥EF;

(3)若AE=1,EB=2,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知22x+14x48,x___________;

查看答案和解析>>

同步練習(xí)冊(cè)答案