已知:如圖,AD是BC上的中線,且DF=DE.求證:△DBE≌△DCF.
分析:根據(jù)三角形中線的性質(zhì)可得DB=DC,再根據(jù)全等三角形的判定定理SAS易證得△CFD≌△BED.
解答:證明:∵AD是BC上的中線,
∴DB=DC,
在△CFD和△BED中,
DB=DC
∠BDE=∠CDF
DF=DE
,
∴△BDE≌△CDF(SAS),
點(diǎn)評(píng):本題考查了全等三角形的判定,關(guān)鍵是掌握判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AD是△ABC的高,試判斷∠DAE與∠B、∠ACB之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為(  )
A、3:2B、9:4C、2:3D、4:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD是⊙O的弦,OB⊥AD于點(diǎn)E,交⊙O于點(diǎn)C,OE=1,BE=8,AE:AB=1:3.精英家教網(wǎng)
(1)求證:AB是⊙O的切線;
(2)點(diǎn)F是弧ACD上的一點(diǎn),當(dāng)∠AOF=2∠B時(shí),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD是△ABC的平分線,點(diǎn)E在BC上,點(diǎn)G在CA的延長(zhǎng)線上,EG交AB于點(diǎn)F,且∠AFG=∠G.求證:GE∥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案