如圖,□ABCD的面積為6,E為BC中點,DE、AC交于F點,的面積為      

試題分析:連接AE,根據(jù)三角形的面積公式求出SACE=SCED,SABC=SACD=S平行四邊形ABCD,從而可以求得結果.
連接AE

∵E為BC的中點,
∴BE=CE,
∵△AEC的邊CE上的高和△DEC的邊CE上的高相等,
∴SACE=SCED
同理:∵AD=BC,
∴SABC=SACD=S平行四邊形ABCD=3
∴SACE=
∵平行四邊形ABCD,
∴AD∥BC,AD=BC,

∴SAEF=2SCFE
的面積為.
點評:平行四邊形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,E,F(xiàn)是正方形ABCD的邊AD上兩個動點,滿足AE=DF.連接CF交BD于G,連接BE交AG于點H.若正方形的邊長為2,則線段DH長度的最小值是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,平行四邊形ABCD中,E、F分別是邊AB、CD的中點.

(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形 ABCD中,AB∥DC,BD平分∠ABC,∠DAB=60°,若梯形周長為40cm,則AD=      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,已知AD=8,折疊紙片使AB邊與對角線AC重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為(     )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題:①方程的解是;②有兩邊和一角相等的兩個三角形全等;③順次連接等腰梯形各邊中點所得的四邊形是菱形;④4的平方根是2。其中真命題有(   )
A.4個;B.3個;C.2個;D.1個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD中,O是對角線AC、BD的交點,過點O作OE⊥OF,分別交AB、BC于E、F.

(1)求證:△OEF是等腰直角三角形.
(2)若AE=4,CF=3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90o,且EF交正方形外角的平分線CF于點F.

(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知矩形和點,當點在圖中的位置時,求證:
證明:過點、兩點,

又∵ 
,∴
請你參考上述信息,當點分別在圖、圖中的位置時,請你分別寫出、、 之間的數(shù)量關系?,并選擇其中一種情況給予證明

查看答案和解析>>

同步練習冊答案