學校要建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA.O恰好在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.且在過OA的任意平面上的拋物線如圖1所示,建立平面直角坐標系(如圖2),水流噴出的高度y(m)與水面距離x(m)之間的函數(shù)關系式是y=-x2+
5
2
x+
3
2
,請回答下列問題:
(1)花形柱子OA的高度;
(2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水不至于落在池外?
(1)把x=0代入拋物線y=-x2+
5
2
x+
3
2
,
y=
3
2
=1.5

∴OA=1.5米.

(2)把y=0代入y=-x2+
5
2
x+
3
2
,
-x2+
5
2
x+
3
2
=0

∴2x2-5x-3=0
∴x1=3,x2=-
1
2

又∵x>0
∴x=3
∴OB=3
∴半徑至少是3米.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=ax2+bx+c的頂點M的坐標是(1,3),且與y軸相交于點C(0,2),P(1,1)是拋物線對稱軸上的一點.請回答下列問題:
(1)寫出拋物線的解析式______;
(2)點Q是拋物線上的一點,且使△CPQ的面積等于△CMP的面積,則所有滿足條件的點Q的個數(shù)為:______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸的右交點為A,頂點D在矩形OABC的邊BC上,當y≤0時,x的取值范圍是1≤x≤5.
(1)求b,c的值;
(2)直線y=mx+n經(jīng)過拋物線的頂點D,該直線在矩形OABC內部分割出的三角形的面積記為S,求S與m的函數(shù)關系式,并寫出自變量m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

嘉興月河橋拱形可以近似看作拋物線的一部分.在大橋截面1:1000的比例圖上,跨度AB=5cm,拱高OC=0.9cm,線段DE表示河流寬度,DEAB,如圖(1)在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖(2).

(1)求出圖(2)上以這一部分拋物線為圖象的函數(shù)解析式,并寫出自變量的取值范圍;
(2)如果DE與AB的距離OM=0.45cm,求河流寬度(備用數(shù)據(jù):
2
≈1.4
,計算結果精確到1米).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=-x+3與x軸、y軸分別交于點B、C,拋物線y=-x2+bx+c經(jīng)過點B、C,點A是拋物線與x軸的另一個交點.
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點,且S△ABP=
1
2
S△ABC,這樣的點P有______個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-
2
3
x2+bx+c
與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸交于點C,且x1,x2是方程x2-2x-3=0的兩個根(x1<x2).
(1)求拋物線的解析式;
(2)過點A作ADCB交拋物線于點D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動、DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5)解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某機械租賃公司有同一型號的機械設備40套.經(jīng)過一段時間的經(jīng)營發(fā)現(xiàn):當每套機械設備的月租金為270元時,恰好全部租出.在此基礎上,當每套設備的月租金每提高10元時,這種設備就少租出一套,且沒租出的一套設備每月需支出費用(維護費、管理費等)20元.設每套設備的月租金為x(元),租賃公司出租該型號設備的月收益(收益=租金收入-支出費用)為y(元).
(1)用含x的代數(shù)式表示未出租的設備數(shù)(套)以及所有未出租設備(套)的支出費;
(2)求y與x之間的二次函數(shù)關系式;
(3)當月租金分別為300元和350元時,租賃公司的月收益分別是多少元?此時應該出租多少套機械設備?請你簡要說明理由;
(4)請把(2)中所求出的二次函數(shù)配方成y=a(x+
b
2a
2+
4ac-b2
4a
的形式,并據(jù)此說明:當x為何值時,租賃公司出租該型號設備的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如下表:

(1)求二次函數(shù)的解析式;
(2)求以二次函數(shù)圖象與坐標軸交點為頂點的三角形面積;
(3)若A(m,y1),B(m-1,y2),兩點都在該函數(shù)的圖象上,且m<2,試比較y1與y2的大小.

查看答案和解析>>

同步練習冊答案