【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于點E,交BD于點H,EN∥DC交BD于點N.下列結論:
①BH=DH;②CH=(+1)EH;③= . 其中正確的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
【答案】B
【解析】
①如圖,過H作HM⊥BC于M,根據角平分線的性質可以得到DH=HM,而在Rt△BHM中BH>HM,所以容易判定①是錯誤的;
②設HM=x,那么DH=x,由于∠ABC=90°,BD⊥DC,BD=DC,由此得到∠DBC=45°,而AD∥CB,由此可以證明△ADB是等腰直角三角形,又CE平分∠BCD,∠BDC=∠ABC=90°,由此可以證明△DCH∽△EBC,再利用相似三角形的性質可以推出∠BEH=∠DHC,然后利用對頂角相等即可證明∠BHC=∠BEH,接著得到BH=BE,然后即可用x分別表示BE、EN、CD,又由EN∥DC可以得到△DCH∽△NEH,再利用相似三角形的性質即可結論②;
③利用(2)的結論可以證明△ENH∽△CBE,然后利用相似三角形的性質和三角形的面積公式即可證明結論③.
①如圖,過H作HM⊥BC于M,
∵CE平分∠BCD,BD⊥DC
∴DH=HM,
而在Rt△BHM中BH>HM,
∴BH>HD,
∴所以容易判定①是錯誤的;
②∵CE平分∠BCD,
∴∠DCE=∠BCE,而∠EBC=∠BDC=90°,
∴∠BEH=∠DHC,
而∠DHC=∠EHB,
∴∠BEH=∠EHB,
∴BE=BH,
設HM=x,那么DH=x,
∵BD⊥DC,BD=DC,
∴∠DBC=∠ABD=45°,
∴BH=x=BE,
∴EN=x,
∴CD=BD=DH+BH=(+1)x,
即,
∵EN∥DC,
∴△DCH∽△NEH,
∴,即CH=(+1)EH;
③由②得∠BEH=∠EHB,
∵EN∥DC,
∴∠ENH=∠CDB=90°,
∴∠ENH=∠EBC,
∴△ENH∽△CBE,
∴EH:EC=NH:BE,
而,
∴.
所以正確的只有②③.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.
(1)若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?
(2)若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,B,與軸交于點C。過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD。已知點A坐標為(-1,0)。
(1)求該拋物線的解析式;
(2)求梯形COBD的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,明亮同學在點A處測得大樹頂端C的仰角為36°,斜坡AB的坡角為30°,沿在同一剖面的斜坡AB行走16米至坡頂B處,然后再沿水平方向行走6.4米至大樹腳底點D處,那么大樹CD的高度約為多少米?)(參考數(shù)據:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,≈1.7).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,⊙O經過A、B、D三點,過點B作BE∥AD,交⊙O于點E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:△AEF≌△DEC;
(2)當△ABC滿足什么條件時,四邊形AFBD是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給定關于的二次函數(shù) ,
學生甲:當時,拋物線與 軸只有一個交點,因此當拋物線與軸只有一個交點時,的值為3;
學生乙:如果拋物線在軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com