如圖,△ABC中,DE∥BC,DE分別交邊AB、AC于D、E兩點,若AD:AB=1:3,則△ADE與四邊形DBCE的面積比為   
【答案】分析:由DE∥BC,即可得△ADE∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得S△ADE:S△ABC的值,繼而求得△ADE與四邊形DBCE的面積比.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,
∵AD:AB=1:3,
∴S△ADE:S△ABC=1:9,
∴S△ADE:S四邊形DBCE=1:8.
故答案為:1:8.
點評:此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握相似三角形面積比等于相似比的平方定理的應(yīng)用是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案