分析 (1)先由△ACD和△BCE是等邊三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根據SAS定理可知△ACE≌△DCB,由全等三角形的性質即可得出結論;
(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根據∠ACD=∠ECB=60°,A、C、B三點共線可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根據∠MCN=60°可知△MCN為等邊三角形,故∠NMC=∠DCN=60°故可得出結論.
(3)作CP⊥AE,CQ⊥DB,由△ACE≌△DCB可得它們的面積相等,即可得到CP=CQ,再由角平分線的逆定理可得FC平分∠AFB.
解答 證明:(1)∵△ACD和△BCE是等邊三角形,
∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,
∵∠DCA=∠ECB=60°,
∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,
在△ACE與△DCB中,
∵$\left\{\begin{array}{l}{AC=DC}\\{∠ACE=∠DCB}\\{CE=CB}\end{array}\right.$,
∴△ACE≌△DCB,
∴AE=BD;
(2)∵由(1)得,△ACE≌△DCB,
∴∠CAM=∠CDN,
∵∠ACD=∠ECB=60°,而A、C、B三點共線,
∴∠DCN=60°,
在△ACM與△DCN中,
∵$\left\{\begin{array}{l}{∠MAC=∠NDC}\\{AC=DC}\\{∠ACM=∠DCN}\end{array}\right.$,
∴△ACM≌△DCN(ASA),
∴MC=NC,
∵∠MCN=60°,
∴△MCN為等邊三角形,
∴∠NMC=∠DCN=60°,
∴∠NMC=∠DCA,
∴MN∥AB.
(3)作CP⊥AE,CQ⊥DB,
∵△ACE≌△DCB,
∴S△ACE=S△DCB,
∴$\frac{1}{2}$AE•PC=$\frac{1}{2}$BD•CQ,
∴PC=CQ,
∵CP⊥AE,CQ⊥DB,
∴∠AFC=∠BFC,
∴FC平分∠AFB.
點評 本題考查的是等邊三角形的判定與性質及全等三角形的判定與性質,根據題意判斷出△ACE≌△DCB,△ACM≌△DCN是解答此題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (ab)4÷(ab3)=ab | B. | a10÷(a5÷a3)=a8 | C. | xm+3÷xm+1=x3 | D. | (x3n÷xn)÷x2n=x |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com