【題目】已知如圖1菱形ABCD,∠ABC=60°,邊長為 3,在菱形內(nèi)作等邊三角形△AEF,邊長為2 ,點E,點F,分別在AB,AC上,以A為旋轉(zhuǎn)中心將△AEF順時針轉(zhuǎn)動,旋轉(zhuǎn)角為α,如圖2
(1)在圖2中證明BE=CF;
(2)若∠BAE=45°,求CF的長度;
(3)當(dāng)CF= 時,直接寫出旋轉(zhuǎn)角α的度數(shù).
【答案】
(1)證明:連接AC,如圖2所示:
∵四邊形ABCD是菱形,
∴AB=BC=3,
∵∠ABC=60°,
∴△ABC是等邊三角形,
∴∠BAC=60°,AB=AC,
∵△AEF是等邊三角形,
∴AE=AF,∠EAF=60°,
∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,
∴∠BAE=∠CAF,
在△AEB和△AFC中, ,
∴△AEB≌△AFC(SAS),
∴BE=CF;
(2)解:過E點作EM⊥AB于M,如圖3所示:
∵∠BAE=45°,則△AEM是等腰直角三角形,
∴EM=AM= AE= ×2 =2,
∴BM=AB﹣AM=3﹣2=1,
在Rt△BME中,由勾股定理得:BE= = = ,
由(1)得:CF=BE= ;
(3)解:過E點作EM⊥AB于M,如圖4所示,
則∠EMB=∠EMA=90°,
由(1)得:BE=CF= ,
設(shè)AM=x,則BM=3﹣x,
由勾股定理得:BM2=BE2﹣BM2,BM2=AE2﹣AM2,
∴BE2﹣BM2=AE2﹣AM2,即( )2﹣(3﹣x)2=(2 )2﹣x2,
解得:x=0,即點M與A重合,
∴∠BAE=90°,即α=90°;
同理可得:當(dāng)CF= 時,α還等于270°;
綜上所述:當(dāng)CF= 時,旋轉(zhuǎn)角α的度數(shù)為90°或270°
【解析】(1)連接AC,證明△AEB≌△AFC,即可得出結(jié)論;(2)過E點作EM⊥AB于M,則△AEM是等腰直角三角形,得出EM=AM= AE=2,求出BM=AB﹣AM=1,在Rt△BME中,由勾股定理求出BE,即可得出CF的長;(3)過E點作EM⊥AB于M,則∠EMB=∠EMA=90°,由(1)得:BE=CF= ,設(shè)AM=x,則BM=3﹣x,由勾股定理得出方程,積解方程求出x=0,得出點M與A重合,求出∠BAE=90°,即α=90°;同理可得:當(dāng)CF= 時,α還等于270°即可.
【考點精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數(shù)y= 圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當(dāng)線段AP與線段BP之差達到最大時,點P的坐標(biāo)是( )
A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點.
(2)△ABC 的面積是多少?
(3)作出△ABC 關(guān)于 y 軸的對稱圖形.
(4)請在x 軸上求作一點P,使△PA1C1 的周長最小,并直接寫出點P 的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=45°,點P在∠AOB的內(nèi)部.P′與P關(guān)于OA對稱,P"與P關(guān)于OB對稱,則O、P′、P"三點所構(gòu)成的三角形是( )
A.直角三角形B.鈍角三角形C.等腰直角三角形D.等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點N(0,6),點M在x軸負(fù)半軸上,ON=3OM,A為線段MN上一點,AB⊥x軸,垂足為點B,AC⊥y軸,垂足為點C.
(1)直接寫出點M的坐標(biāo)為 ;
(2)求直線MN的函數(shù)解析式;
(3)若點A的橫坐標(biāo)為﹣1,將直線MN平移過點C,求平移后的直線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校辦工廠現(xiàn)在年產(chǎn)值是15萬元,計劃以后每年增加2萬元.
(1)寫出年產(chǎn)值(萬元)與年數(shù)之間的關(guān)系式.
(2)用表格表示當(dāng)從0變化到6(每次增加1)的對應(yīng)值.
(3)求5年后的年產(chǎn)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com