【題目】如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
(1)如圖②,∠MAN=90°,射線AE在這個角的內部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖③,點B、C分別在∠MAN的邊AM、AN上,點E、F在∠MAN內部的射線AD上,∠1、∠2分別是△ABE與△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)依據三角形的內角和定理和∠MAN=90°,易得出求出∠ABD=∠CAF,從而再結合其他條件依據AAS證兩三角形全等即可;(2)根據已知條件和三角形的外角性質求出∠ABE=∠CAF,∠BAE=∠FCA,根據ASA證兩三角形全等即可.
(1)∵ ∠MAN=90°
∴ ∠BAD+∠CAF=90°.
∵CF⊥AE,BD⊥AE BE=CF,
∴ ∠BDA=∠CFA= 90°, ∠BAD+∠DBA=90°
∴ ∠DBA=∠CAF,
又∵在△ABD和△CAF中,AB=AC, ∠BDA=∠CFA,∠DBA=∠CAF,
∴,∴△ABD≌△CAF(AAS).
(2)∵∠1、∠2分別是△ABE與△CAF的外角
∴ ∠BEA=∠CFA
∵∠1是△ABE的外角,∠1=∠BAC
∴ ∠1=∠EBA+∠BAE
∠BAC=∠EBA+∠CAF
∴ ∠EBA=∠CAF,
又∵在△ABE和△CAF中,AB=AC, ∠BEA=∠CFA,∠EBA=∠CAF,
∴,∴△ABE≌△CAF(AAS).
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:
解:設a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學因式分解的結果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請你直接寫出因式分解的最后結果:________;
(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在BC上,求證:△ABC是等腰三角形.
(2)如圖2,若點O在△ABC內部,求證:AB=AC.
(3)若點O點在△ABC的外部,△ABC是等腰三角形還成立嗎?請畫圖表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點M、N在邊BC上.
(1)如圖1,如果AM=AN,求證:BM=CN;
(2)如圖2,如果M、N是邊BC上任意兩點,并滿足∠MAN=45°,那么線段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,請證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初中生在數(shù)學運算中使用計算器的現(xiàn)象越來越普遍,某校一興趣小組隨機抽查了本校若干名學生使用計算器的情況.以下是根據抽查結果繪制出的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
請根據上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是;
(2)請補全上述條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)若從這次接受調查的學生中,隨機抽查一名學生恰好是“不常用”計算器的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的兩個頂點A , D分別在x軸和y軸上,CE⊥y軸于點E , OA=2,∠ODA=30°.若反比例函數(shù)y= 的圖象過CE的中點F , 則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點C,若ACAB=12,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,點E在CB的延長線上,聯(lián)結AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE且與AE交于點G.
(1)求證:GF=BF.
(2)在BC邊上取點M,使得BM=BE,聯(lián)結AM交DE于點O.求證:FOED=ODEF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com