(2006•龍巖)不等式組的解集是   
【答案】分析:本題可根據(jù)不等式組分別求出x的取值,然后畫(huà)出數(shù)軸,數(shù)軸上相交的點(diǎn)的集合就是該不等式的解集.若沒(méi)有交點(diǎn),則不等式無(wú)解
解答:解:不等式組可化為:
在數(shù)軸上可表示為:

因此不等式的解集為:1<x<3.
點(diǎn)評(píng):本題分別解完不等式后可以利用數(shù)軸或口訣“比大的小,比小的大,中間找”得到最終結(jié)果,此題考查利用數(shù)形結(jié)合解不等式組,是對(duì)學(xué)生基本運(yùn)算方法、運(yùn)算法則、基本性質(zhì)的運(yùn)用能力的考查.本題是以填空題的形式考查一元一次不等式組的解法,要注意利用數(shù)軸確定不等式組的解集.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年上海市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線(xiàn)y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線(xiàn)y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線(xiàn)y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線(xiàn)y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省漳州市詔安縣南城中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線(xiàn)y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線(xiàn)y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•龍巖)如圖,已知拋物線(xiàn)y=-x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線(xiàn)y=-x+3與x軸交于點(diǎn)Q,點(diǎn)P是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2006•龍巖)已知:關(guān)于x的一元二次方程x2-(2m+1)x+m2+m-2=0.
(1)求證:不論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根x1,x2滿(mǎn)足,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案