【題目】感知:如圖①,在矩形ABCD中,點(diǎn)E是邊BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形ABCD內(nèi)部的點(diǎn)F處,延長(zhǎng)AF交CD于點(diǎn)G,連結(jié)FC,易證∠GCF=∠GFC.
探究:將圖①中的矩形ABCD改為平行四邊形,其他條件不變,如圖②,判斷∠GCF=∠GFC是否仍然相等,并說明理由.
應(yīng)用:如圖②,若AB=5,BC=6,則△ADG的周長(zhǎng)為 .
【答案】探究:∠GCF=∠GFC,理由見解析;應(yīng)用:16.
【解析】
試題分析:探究:由ABCD及折疊可得∠B+∠ECG=∠AFE+∠ECG=∠AFE+∠EFG=180°,即∠ECG=∠EFG,再根據(jù)EB=EF=EC得∠EFC=ECF,從而可得∠GCF=∠GFC;
應(yīng)用:由(1)中∠GCF=∠GFC得GF=GC,AF=AB,根據(jù)△ADG的周長(zhǎng)AD+AF+GF+GD=AD+AB+GC+GD可得.
試題解析:探究:∠GCF=∠GFC,理由如下:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠B+∠ECG=180°,
又∵△AFE是由△ABE翻折得到,
∴∠AFE=∠B,EF=BE,
又∵∠AFE+∠EFG=180°,
∴∠ECG=∠EFG,
又∵點(diǎn)E是邊BC的中點(diǎn),
∴EC=BE,
∵EF=BE,
∴EC=EF,
∴∠ECF=∠EFC,
∴∠ECG-∠ECF=∠EFG-∠EFC,
∴∠GCF=∠GFC;
應(yīng)用:∵△AFE是由△ABE翻折得到,
∴AF=AB=5,
由(1)知∠GCF=∠GFC,
∴GF=GC,
∴△ADG的周長(zhǎng)AD+AF+GF+GD=AD+AB+GC+GD=AD+AB+CD=6+5+5=16
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的課余生活,某中學(xué)在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,問卷中請(qǐng)學(xué)生選擇最喜歡的課余生活種類(每人只選一類),選項(xiàng)有音樂類、美術(shù)類、體育類及其他共四類.調(diào)查后將數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(如圖所示).
(1)請(qǐng)根據(jù)所給的扇形圖和條形圖,直接填寫出扇形圖中缺失的數(shù)據(jù),并把條形圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,音樂類選項(xiàng)所在的扇形的圓心角的大小為 °;
(3)這所中學(xué)共有學(xué)生1200人,求喜歡音樂和美術(shù)類的課余生活共有多少人?
(4)在問卷調(diào)查中,小丁和小李分別選擇了音樂類和美術(shù)類,校學(xué)生會(huì)要從選擇音樂類和美術(shù)類的學(xué)生中分別抽取一名學(xué)生參加活動(dòng),用列表或畫樹狀圖的方法求小丁和小李恰好都被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于四邊形ABCD,給出下列4組條件:①∠A=∠B=∠C=∠D;②∠B=∠C=∠D;③∠A=∠B,∠C=∠D;④∠A=∠B=∠C=90°,其中能得到“四邊形ABCD是矩形”的條件有( )
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn)的拋物線y=-x2+4mx(m>0)與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,過點(diǎn)P(1,m)作直線PB⊥x軸,交拋物線于點(diǎn)B,作點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)C(點(diǎn)B、C不重合),連結(jié)BC,當(dāng)點(diǎn)P、B不重合時(shí),以BP、BC為邊作矩形PBCQ,設(shè)矩形PBCQ的周長(zhǎng)為l.
(1)當(dāng)m=1時(shí),求點(diǎn)A的坐標(biāo).
(2)當(dāng)BC=時(shí),求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
(3)當(dāng)點(diǎn)P在點(diǎn)B下方時(shí),求l與m之間的函數(shù)關(guān)系.
(4)連結(jié)CP,以CP為直角邊作等腰直角三角形PCM,直接寫出點(diǎn)M落在坐標(biāo)軸上時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程kx2+2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( )
A. k>﹣1 B. k<﹣1 C. k≥﹣1且k≠0 D. k>﹣1且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】投擲兩枚質(zhì)地均勻的骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù),則下列事件為隨機(jī)事件的是( )
A. 兩枚骰子向上一面的點(diǎn)數(shù)之和大于1
B. 兩枚骰子向上一面的點(diǎn)數(shù)之和等于1
C. 兩枚骰子向上一面的點(diǎn)數(shù)之和大于12
D. 兩枚骰子向上一面的點(diǎn)數(shù)之和等于12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上A,B兩點(diǎn)所表示的數(shù)分別是3,﹣2,則表示AB之間距離的算式是( 。
A. 3﹣(﹣2) B. 3+(﹣2) C. ﹣2﹣3 D. ﹣2﹣(﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABCD中,AB=AC,分別在射線AB、CA上取點(diǎn)D、E,連結(jié)DE,過點(diǎn)E作EF∥AB交直線BC于點(diǎn)F,直線BC與DE所在直線交于點(diǎn)M.
猜想:如圖①,點(diǎn)D在邊AB延長(zhǎng)線上,點(diǎn)E在邊AC上,且BD=CE,則線段BM、EM的大小關(guān)系為 .
探究:如圖②,點(diǎn)D、E分別在邊AB、CA延長(zhǎng)線上,且BD=CE,判斷線段DM、EM的大小關(guān)系,并加以證明.
拓展:如圖③,點(diǎn)D在邊AB上(點(diǎn)D不與點(diǎn)A、B重合),點(diǎn)E在邊CA的延長(zhǎng)線上,其它條件不變,若BD=1,CE=4,DM=0.7,則線段DE的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com