【題目】計算(-3x)·(2x2-5x-1)的結(jié)果是(
A.-6x2-15x2-3x
B.-6x3+15x2+ 3x
C.-6x3+15x2
D.-6x3+15x2-1

【答案】B
【解析】(-3x)·(2x2-5x-1)
=(-3x)·2x2+(-3x)·(-5x)+(-3x)·(-1)
=-6x3+15x2+ 3x ,
故選B
【考點精析】掌握單項式乘多項式是解答本題的根本,需要知道單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩組數(shù)據(jù)a1a2,a3a4,a5a1-1a2-1,a3-1a4-1,a5-1,下列判斷中錯誤的是( )

A. 平均數(shù)不相等,方差相等 B. 中位數(shù)不相等,標(biāo)準(zhǔn)差相等

C. 平均數(shù)相等,標(biāo)準(zhǔn)差不相等 D. 中位數(shù)不相等,方差相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間定價增加10 x元(x為整數(shù))。

(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。

(2)(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?

(3)(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:當(dāng)日所獲利潤不低于5000元,賓館為游客居住的房間共支出費用沒有超過600元,每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程(k-1)x2+2kx+2=0

(1求證:無論k為何值,方程總有實數(shù)根。

(2)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時k的值。若不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程ax2+2x+10有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足x-5<3x+1的x的最小整數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,EF是對角線BD上的兩點, 如果添加一個條件使ABE≌△CDF,則添加的條件不能是( 。

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC和△DCE均是等邊三角形,點B、C、E在同一條直線上,AE與BD交于點O,AE與CD交于點G,AC與BD交于點F,連結(jié)OC、FG,則下列結(jié)論:①AE=BD;②AG=BF;③; ④圖中共有4對全等三角形,其中正確結(jié)論的個數(shù)( )

A. 3個 B. 2個 C. 1個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,點A1A2,A3,A4C1,C2,C3,C4分別ABCD的五等分點,點B1,B2D1,D2分別是BCDA的三等分點,已知四邊形A4B2C4D2的面積為1,則平行四邊形ABCD面積為( 。

A. 2 B. C. D. 15

查看答案和解析>>

同步練習(xí)冊答案