(2012•鄭州模擬)如圖,PA與⊙O相切,切點(diǎn)為A,PO交⊙O于點(diǎn)C,點(diǎn)B是優(yōu)弧
CBA
上一點(diǎn),若∠ABC=31°,則∠P的度數(shù)為
28°
28°
分析:連接OA,根據(jù)切線性質(zhì)求出∠PAO,根據(jù)圓周角定理得出∠POA=2∠ABC,求出∠POA,根據(jù)三角形的內(nèi)角和定理求出即可.
解答:解:連接OA,
∵PA切⊙0于A,
∴∠PAO=90°,
∵∠ABC=31°,
∴由圓周角定理得:∠POA=2∠ABC=62°,
∴在△PAO中,∠P=180°-∠POA-∠PAO=180°-62°-90°=28°,
 故答案為:28°.
點(diǎn)評:本題考查了切線性質(zhì),圓周角定理,三角形的內(nèi)角和定理等知識點(diǎn),解此題的關(guān)鍵是求出∠PAO和∠POA的度數(shù),題目比較典型,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)中國男子職業(yè)籃球聯(lián)賽(CBA)2011-2012賽季總決賽在廣東東莞與北京金隅兩隊之間進(jìn)行,北京金隅隊球星馬布里在前五場的得分情況如下:36、23、39、28、32,這組數(shù)據(jù)的極差和中位數(shù)分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)將兩張矩形紙片如圖所示擺放,使其中一張矩形紙片的一個頂點(diǎn)恰好落在另一張矩形紙片的一條邊上,若∠1=26°,則∠2的度數(shù)為
64
64
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)鄭州地鐵一號線將于2013年底建成,它的通車將給市民的出行方式帶來一些新變化.小王和小林準(zhǔn)備利用課余時間,以問卷的方式對鄭州市民的出行方式進(jìn)行調(diào)查.如圖是鄭州地鐵一號線圖(部分),小王和小林分別從鄭州火車站、二七廣場站、市體育館站這三站中,隨機(jī)選取一站向其周圍的人群進(jìn)行問卷調(diào)查,則小王選取的站點(diǎn)與小林選取的站點(diǎn)相鄰的概率是
4
9
4
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)已知二次函數(shù)y=ax2+bx-2的圖象經(jīng)過點(diǎn)A(1,0)及B(-2,0)兩點(diǎn).
(1)求二次函數(shù)的表達(dá)式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q,當(dāng)點(diǎn)N在線段BM上運(yùn)動時(點(diǎn)N不與點(diǎn)B、點(diǎn)M重合),設(shè)NQ的長為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出四邊形NQAC的面積的最大值;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案