如圖,在平面直角坐標系xOy中,A(2,0),B(4,0),動點C在直線上,若以A、B、C三點為頂點的三角形是等腰三角形,則點C的個數(shù)是【    】

  A.1          B.2          C.3         D.4


A。

【考點】單動點問題,坐標與圖形性質,等腰三角形的判定,含30度角直角三角形的性質。

【解析】如圖,AB的垂直平分線與直線相交于點C,則以A、B、C三點為頂點的三角形是等腰三角形。

  

∴AB=BC=CA。

點C的個數(shù)是1。

故選A。 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.

(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關系?試證明你的結論;

(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設為正方形PQMN,如圖3,設正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;

(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉90°得到正方形OHKL,如圖4,求△ACK的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


兩個全等的梯形紙片如圖(1)擺放,將梯形紙片ABCD沿上底AD方向向右平移得到圖(2).已知AD=4,BC=8,若陰影部分的面積等于四邊形A′B′BA的面積,則圖(2)中平移距離A′A=       .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 如圖,菱形ABCD中,邊長為2,∠B=60°,將△ACD繞點C旋轉,當AC(即A′C)與AB交于一點E,CD(即CD′)同時與AD交于一點F時,點E,F(xiàn)和點A構成△AEF。試探究△AEF的周長是否存在最小值,如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.

(1)求AD的長及拋物線的解析式;

(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


.如圖,在Rt△ABC中,∠C=90°,AC=BC=4cm,點D為AC邊上一點,且AD=3cm,動點E從點A出發(fā),以1cm/s的速度沿線段AB向終點B運動,運動時間為x s.作∠DEF=45°,與邊BC相交于點F.設BF長為ycm.

(1)當x=     s時,DE⊥AB;

(2)求在點E運動過程中,y與x之間的函數(shù)關系式及點F運動路線的長;

(3)當△BEF為等腰三角時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


中,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動。過點P作PE∥BC交AD于點E,連結EQ。設動點運動時間為x秒。

(1)用含x的代數(shù)式表示AE、DE的長度;

(2)當點Q在BD(不包括點B、D)上移動時,設的面積為,求與月份的函數(shù)關系式,并寫出自變量的取值范圍;

(3)當為何值時,為直角三角形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,直線l1與x軸、y軸分別交于A、B兩點,直線l2與直線l1關于x軸對稱,已知直線l1的解析式為

(1)求直線l2的解析式;

(2)過A點在△ABC的外部作一條直線l3,過點B作BE⊥l3于E,過點C作CF⊥l3于F,請畫出圖形并求證:BE+CF=EF;

(3)△ABC沿y軸向下平移,AB邊交x軸于點P,過P點的直線與AC邊的延長線相交于點Q,與y軸相交于點M,且BP=CQ,在△ABC平移的過程中,①OM為定值;②MC為定值.在這兩個結論中,有且只有一個是正確的,請找出正確的結論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


對于實數(shù)x,我們規(guī)定表示不大于x的最大整數(shù),如,現(xiàn)對82進行如下操作:,這樣對82只需進行3次操作后變為1,類似地,①對121只需進行          次操作后變?yōu)?;②只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是

          .

查看答案和解析>>

同步練習冊答案