觀察思考
如圖,⊙O的半徑是,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn).
(1)寫出⊙O上所有格點(diǎn)的坐標(biāo).
(2)設(shè)上述格點(diǎn)的坐標(biāo)為P(a,b).
①若Q(1,-3),是否存在這樣的點(diǎn)P,使得直線PQ與⊙O相切?若存在請寫出符合條件的一個點(diǎn)P,并予以證明;若不存在,請說明理由.
②求二次函數(shù)y=ax2+bx的圖象經(jīng)過第一、二、四象限的概率.

【答案】分析:(1)根據(jù)圖形寫出所有滿足題意的點(diǎn)P的坐標(biāo),共有8個;
(2)①存在,連接OP,QP,由“SAS”證明△PMO≌△QNP,從而得到對應(yīng)角∠OPM=∠PQN,因?yàn)椤螾QN與∠QPN互余,所以得到∠OPM+∠QPN=90°,根據(jù)平角定義得到∠OPQ為直角,故PQ為圓O的切線;
②由二次函數(shù)y=ax2+bx的圖象經(jīng)過第一、二、四象限,得到a與b的符號,進(jìn)而得到滿足題意的P坐標(biāo)的個數(shù)為2個,根據(jù)概率的求法,利用2除以8即可求出概率.
解答:解:(1)根據(jù)圖形得到滿足題意的格點(diǎn)P坐標(biāo)為:
(1,2),(2,1),(-1,2),(-2,1),(-1,-2),(-2,-1),(1,-2),(2,-1)共8個;

(2)①存在這樣的點(diǎn)P,使得直線PQ與⊙O相切,例如P(2,-1),
證明:根據(jù)題意畫出圖形,如圖所示:
連接OP,QP,由OM=NP=2,PM=QN=1,且∠PMO=∠QNP=90°,
∴△PMO≌△QNP,∴∠OPM=∠PQN,
∵∠QPN+∠PQN=90°,∴∠OPQ=180°-(∠OPM+∠QPN)=90°,
∴直線PQ是⊙O的切線;
②∵二次函數(shù)y=ax2+bx的圖象經(jīng)過第一、二、四象限,
∴a>0,且->0,則b<0,
滿足題意的點(diǎn)P坐標(biāo)有:(1,-2),(2,-1)共2個,而所有點(diǎn)P坐標(biāo)有(1,2),(2,1),(-1,2),(-2,1),(-1,-2),(-2,-1),(1,-2),(2,-1)共8個;
∴P==
點(diǎn)評:本題考查了圓的切線性質(zhì),事件概率的求法,及全等三角形的知識.切線的證明方法有兩種:1、有點(diǎn)連接此點(diǎn)與圓心,證明夾角為直角;2、無點(diǎn)作垂線,證明垂線段等于圓的半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的邊BC在直線m上,AC⊥BC,且AC=BC,△DEF的邊FE也在直線m上,邊DF與邊AC重合,且DF=EF.
(1)在圖(1)中,請你通過觀察、思考,猜想并寫出AB與AE所滿足的數(shù)量關(guān)系和位置關(guān)系;(不要求證明)
(2)將△DEF沿直線m向左平移到圖(2)的位置時,DE交AC于點(diǎn)G,連接AE,BG.猜想△BCG與△ACE能否通過旋轉(zhuǎn)重合?請證明你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察思考
如圖,⊙O的半徑是
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱精英家教網(wǎng)為格點(diǎn).
(1)寫出⊙O上所有格點(diǎn)的坐標(biāo).
(2)設(shè)上述格點(diǎn)的坐標(biāo)為P(a,b).
①若Q(1,-3),是否存在這樣的點(diǎn)P,使得直線PQ與⊙O相切?若存在請寫出符合條件的一個點(diǎn)P,并予以證明;若不存在,請說明理由.
②求二次函數(shù)y=ax2+bx的圖象經(jīng)過第一、二、四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

觀察思考
如圖,⊙O的半徑是數(shù)學(xué)公式,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn).
(1)寫出⊙O上所有格點(diǎn)的坐標(biāo).
(2)設(shè)上述格點(diǎn)的坐標(biāo)為P(a,b).
①若Q(1,-3),是否存在這樣的點(diǎn)P,使得直線PQ與⊙O相切?若存在請寫出符合條件的一個點(diǎn)P,并予以證明;若不存在,請說明理由.
②求二次函數(shù)y=ax2+bx的圖象經(jīng)過第一、二、四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省模擬題 題型:解答題

觀察思考,如圖是某種圓形裝置的示意圖,⊙O的直徑AB =5,AB的兩側(cè)分別有定點(diǎn)C和動點(diǎn)P,tan ∠CAB=,點(diǎn)P在弧AB上滑動,過點(diǎn)C作CP的垂線CO,與PB的延長線交于點(diǎn)Q,連接BC.解決問題
(1)當(dāng)PC=____時,CQ與⊙O相切,此時CQ=       .
(2)當(dāng)點(diǎn)P與點(diǎn)C關(guān)于AB對稱時,求CQ的長。
(3)當(dāng)點(diǎn)P運(yùn)動到弧AB的中點(diǎn)時,求CQ的長。

查看答案和解析>>

同步練習(xí)冊答案