如圖,已知⊙O是△ABC的外接圓,AB=AC,D是直線BC上一點,直線AD交⊙O于點E,AE=9,DE=3,則AB的長等于(    )
A.7B.C.D.
D.

試題分析:(1)由AB=AC,根據(jù)等邊對等角的性質(zhì),即可得∠ABC=∠C,又由同弧對的圓周角相等,即可證得:∠ABC=∠E;由∠ABC=∠E,∠BAE=∠DAB(公共角),根據(jù)有兩角對應(yīng)相等的三角形相似,即可得△ABD∽△AEB,根據(jù)相似三角形的對應(yīng)邊成比例,易證得AB2=AE•AD,把相應(yīng)數(shù)值代入即可求出AB=3
故選D.
考點: 1.相似三角形的判定與性質(zhì);2.圓周角定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB、AC與⊙O相切于點B、C,∠A=50゜,P為⊙O上異于B、C的一個動點,則∠BPC的度數(shù)為         .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:在⊙O中,經(jīng)過⊙O內(nèi)一點P有一條弦AB,且AP=4,PB=3,過P點另有一動弦CD,連接AC,DB.設(shè)CP=x,PD=y.

(1)求證:△ACP∽△DBP.
(2)寫出y關(guān)于x的函數(shù)解析式.
(3)若CD=8時,求S△ACP:S△DBP的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一元二次方程x -7x+12=0的兩根恰好是相切兩圓的半徑,則兩圓的圓心距是__________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形內(nèi)接于⊙,是⊙的直徑,,垂足為,平分

(1)求證:是⊙的切線;
(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,若是⊙的直徑,是⊙的弦,,則的度數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的半徑為5,弦AB=8,M是弦AB上的動點,則OM不可能為(    )
 
A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O的直徑AB與弦AC的夾角為30°,過點C的切線PC與AB的延長線交于P.PC=5,則⊙O的半徑為( 。
A.B.C.5D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等邊三角形的內(nèi)切圓半徑為1,那么三角形的邊長為
A.2B.C.3D.2

查看答案和解析>>

同步練習冊答案