(2003•河南)如圖,⊙O、⊙B相交于點M、N,點B在⊙O上,NE為⊙B的直徑,點C在⊙B上,CM交⊙O于點A,連接AB并延長交NC于點D,求證:AD⊥NC.
分析:連接EC,由NE為圓B的直徑,得到NC垂直于EC,由ABNM為圓O的內(nèi)接四邊形,利用圓內(nèi)接四邊形的外角等于它的內(nèi)對角得到一對角相等,再利用對頂角相等及同弧所對的圓周角相等,根據(jù)等量代換得到一對同位角相等,利用同位角相等兩直線平行得到EC與BD平行,即可得到AD垂直于NC.
解答:證明:連接EC,
∵NE為圓B的直徑,
∴NC⊥CE,即∠NCE=90°,
∵四邊形ABNM為圓O的內(nèi)接四邊形,
∴∠ABE=∠M,
∵∠ABE=∠NBD,
∴∠M=∠NBD,
∵∠M=∠E,
∴∠NBD=∠E,
∴EC∥BD,
∴∠BDN=∠NCE=90°,
則AD⊥NC.
點評:此題考查了圓周角定理,以及圓內(nèi)接四邊形的性質(zhì),熟練掌握圓周角定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2003•河南)如圖,Rt△OAB的斜邊AO在x軸的正半軸上,直角頂點B在第四象限內(nèi),S△OAB=20,OB:AB=1:2,求A、B兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2003•河南)如圖,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于點D,過點C作CE⊥AD于E,CE的延長線交AB于點F,過點E作EG∥BC交AB于點G,AE•AD=16,AB=4
5
,
(1)求證:CE=EF;
(2)求EG長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2003•河南)如圖,點D、C是以AB為直徑的半圓上的兩點,O為圓心,DE與AC相交于點E,OC∥AD,AB=5,cos∠CAB=0.8,求CE和DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2003•河南)如圖,AB是⊙O的直徑,O為圓心,AB=20,DP與⊙O相切于點D,DP⊥PB,垂足為P,PB與⊙O交于點C,PD=8.
①求BC的長;
②連接DC,求tan∠PCD的值;
③以A為原點,直線AB為x軸建立平面直角坐標系,求直線BD的解析式.

查看答案和解析>>

同步練習冊答案