(2008•長春)已知:如圖,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,切線DE⊥AC,垂足為點(diǎn)E.
求證:(1)△ABC是等邊三角形;
(2)

【答案】分析:(1)連接OD,根據(jù)切線的性質(zhì)得到OD⊥DE,從而得到平行線,得到∠ODB=∠A,∠ODB=∠B,則∠A=∠B,得到AC=BC,從而證明該三角形是等邊三角形;
(2)再根據(jù)在圓內(nèi)直徑所對的角是直角這一性質(zhì),推出30°的直角三角形,根據(jù)30°所對的直角邊是斜邊的一半即可證明.
解答:證明:(1)連接OD,得OD∥AC;
∴∠BDO=∠A;
又OB=OD,
∴∠OBD=∠ODB;
∴∠OBD=∠A;
∴BC=AC;
又∵AB=AC,
∴△ABC是等邊三角形;

(2)如上圖,連接CD,則CD⊥AB;
∴D是AB中點(diǎn);
∵AE=AD=AB,
∴EC=3AE;
∴AE=CE.
點(diǎn)評(píng):本題中作好輔助線是解題的關(guān)鍵,連接過切點(diǎn)的半徑是圓中常見的輔助線作法之一.另外還要掌握等邊三角形的判定和性質(zhì)以及30°的直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2008•長春)已知兩個(gè)關(guān)于x的二次函數(shù)y1與y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;當(dāng)x=k時(shí),y2=17;且二次函數(shù)y2的圖象的對稱軸是直線x=-1.
(1)求k的值;
(2)求函數(shù)y1,y2的表達(dá)式;
(3)在同一直角坐標(biāo)系內(nèi),問函數(shù)y1的圖象與y2的圖象是否有交點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2008•長春)已知兩個(gè)關(guān)于x的二次函數(shù)y1與y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;當(dāng)x=k時(shí),y2=17;且二次函數(shù)y2的圖象的對稱軸是直線x=-1.
(1)求k的值;
(2)求函數(shù)y1,y2的表達(dá)式;
(3)在同一直角坐標(biāo)系內(nèi),問函數(shù)y1的圖象與y2的圖象是否有交點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年吉林省長春市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•長春)已知兩個(gè)關(guān)于x的二次函數(shù)y1與y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;當(dāng)x=k時(shí),y2=17;且二次函數(shù)y2的圖象的對稱軸是直線x=-1.
(1)求k的值;
(2)求函數(shù)y1,y2的表達(dá)式;
(3)在同一直角坐標(biāo)系內(nèi),問函數(shù)y1的圖象與y2的圖象是否有交點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省肇慶市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2008•長春)已知兩個(gè)關(guān)于x的二次函數(shù)y1與y2,y1=a(x-k)2+2(k>0),y1+y2=x2+6x+12;當(dāng)x=k時(shí),y2=17;且二次函數(shù)y2的圖象的對稱軸是直線x=-1.
(1)求k的值;
(2)求函數(shù)y1,y2的表達(dá)式;
(3)在同一直角坐標(biāo)系內(nèi),問函數(shù)y1的圖象與y2的圖象是否有交點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年吉林省長春市實(shí)驗(yàn)中學(xué)初三第六次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•長春)已知反比例函數(shù)y=的圖象如圖所示,則二次函數(shù)y=2kx2-x+k2的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案