【題目】如圖.下列三個條件:①AB∥CD,②∠B=∠C.③∠E=∠F.從中任選兩個作為條件,另一個作為結論,編一道數(shù)學題,并說明理由.
已知: ;
結論: ;
理由:
【答案】①②;③;∵AB∥CD,∴∠EAB=∠C,∵∠B=∠C,∴∠B=∠EAB,∴EC∥BF,∴∠E=∠F
【解析】已知:AB∥CD,∠B=∠C,
結論:∠E=∠F,
理由:∵AB∥CD,
∴∠EAB=∠C,
∵∠B=∠C,
∴∠B=∠EAB,
∴EC∥BF,
∴∠E=∠F.
所以答案是:①②,③,∵AB∥CD,∴∠EAB=∠C,∵∠B=∠C,∴∠B=∠EAB,∴EC∥BF,∴∠E=∠F.
【考點精析】利用平行線的判定與性質對題目進行判斷即可得到答案,需要熟知由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天,小明和小玲玩紙片拼圖游戲,發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些長方形來解釋某些等式.比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2 .
(1)圖③可以解釋為等式: .
(2)要拼出一個長為a+3b,寬為2a+b的長方形,需要如圖所示的塊,塊,塊.
(3)如圖④,大正方形的邊長為m,小正方形的邊長為n,若用x、y表示四個矩形的兩邊長(x>y),觀察圖案,指出以下關系式:
(1)xy=(2)x+y=m(3)x2﹣y2=mn(4)
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點M在數(shù)軸上距原點6個單位長度,將M向左移動2個單位長度至N點,點N表示的數(shù)是( )
A. 4 B. -4 C. 8或-4 D. -8或4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com