如圖,由正方形ABCD的頂點A引一直線分別交BD、CD及BC的延長線于E、F、G,⊙O是△CGF的外接圓,求證:CE和⊙O相切.

【答案】分析:要證明CE和⊙O相切,只要證明∠ECO=90°即可.
解答:證明:∵⊙O是△CGF的外接圓,O是FG的中點,∠FCG=90°,
∴OC=OG,∠OCG=∠G;
在△ADE和△CDE中,
,
∴△ADE≌△CDE(SAS),
∴∠DAE=∠DCE,
又∵∠G=∠DAE,
∴∠OCG=∠DCE;
∵∠FCO+∠OCG=90°,
∴∠FCO+∠DCE=90°,
即∠ECO=90°,
∴CE和⊙O相切.
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,由Rt△ABC的三邊向外作正方形,若最大正方形的邊長為8cm,則正方形M與正方形N的面積之和為
64
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形O的邊長為13,正方形N的邊長為12,則正方形M的面積為
25
25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形Q的邊長為13,正方形N的邊長為12,則正方形M的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年四川省宜賓市翠屏區(qū)八年級上期中考試數(shù)學試卷(解析版) 題型:選擇題

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形Q的邊長為13,正方形N的邊長為12,則正方形M的面積為(     )

A.5             B.17           C.25           D.18

 

查看答案和解析>>

科目:初中數(shù)學 來源:漳州 題型:填空題

如圖,由Rt△ABC的三邊向外作正方形,若最大正方形的邊長為8cm,則正方形M與正方形N的面積之和為______cm2
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案