(本題12分)拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

(1)
(3)  P(
(3)≤m≤5

解析試題分析:
解:
(1)由題意得:,解得:
∴拋物線解析式為;
(2)令
∴x1= -1,x2=3,即B(3,0),
設(shè)直線BC的解析式為y=kx+b′,
,解得:,
∴直線BC的解析式為
設(shè)P(a,3-a),則D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB
,
∴當(dāng)時(shí),△BDC的面積最大,此時(shí)P(,);
(3)由(1),y=-x2+2x+3=-(x-1)2+4,
∴OF=1,EF=4,OC=3,
過(guò)C作CH⊥EF于H點(diǎn),則CH=EH=1,

當(dāng)M在EF左側(cè)時(shí),
∵∠MNC=90°,
則△MNF∽△NCH,
,
設(shè)FN=n,則NH=3-n,
,
即n2-3n-m+1=0,
關(guān)于n的方程有解,△=(-3)2-4(-m+1)≥0,
得m≥,
當(dāng)M在EF右側(cè)時(shí),Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,
作EM⊥CE交x軸于點(diǎn)M,則∠FEM=45°,
∵FM=EF=4,
∴OM=5,
即N為點(diǎn)E時(shí),OM=5,
∴m≤5,
綜上,m的變化范圍為:≤m≤5.
考點(diǎn):二次函數(shù)的應(yīng)用
點(diǎn)評(píng):二次函數(shù)的應(yīng)用是中考的必考題型,考生在解此類問(wèn)題時(shí)一定要注意分析求最大值和最小值所需要函數(shù)解決的問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題12分) 如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).

(1)求b,c的值.

(2)連結(jié)POPC,并把△POC沿CO翻折,得到四邊形,那么是否存在點(diǎn)P,使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題12分)已知:如圖,二次函數(shù)的圖象與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).

【小題1】(1)求該二次函數(shù)的關(guān)系式;
【小題2】(2)寫出該二次函數(shù)的對(duì)稱軸和頂點(diǎn)坐標(biāo);
【小題3】(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
【小題4】(4)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年浙江省衢州華外九年級(jí)上學(xué)期第二次質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

(本題12分)如圖,拋物線y=ax2bxcx軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)。點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過(guò)點(diǎn)F且與y軸平行。直線y=-xm過(guò)點(diǎn)C,交y軸于D點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵點(diǎn)K為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)Kx軸的垂線與直線CD交于點(diǎn)H,與拋物線交于     點(diǎn)G,求線段HG長(zhǎng)度的最大值;
⑶在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,CM,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省湖州市六校聯(lián)考九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(-1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案