【題目】如圖,已知二次函數(shù)的圖象的頂點(diǎn)為A.二次函數(shù)的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)的圖象的對(duì)稱軸上.

1)求點(diǎn)A與點(diǎn)C的坐標(biāo);

2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)的關(guān)系式.

【答案】(1)C(2,0);(2).

【解析】試題分析:(1)二次函數(shù)y=ax2+bx的頂點(diǎn)在已知二次函數(shù)拋物線的對(duì)稱軸上,可知兩個(gè)函數(shù)對(duì)稱軸相等,因此先根據(jù)已知函數(shù)求出對(duì)稱軸.根據(jù)函數(shù)解析式得出頂點(diǎn)A的坐標(biāo)與對(duì)稱軸,故可得出二次函數(shù)y=ax2+bx關(guān)于x=1對(duì)稱,且函數(shù)與x軸的交點(diǎn)分別是原點(diǎn)和C點(diǎn),所以點(diǎn)C和點(diǎn)O關(guān)于直線l對(duì)稱,故可得出點(diǎn)C的坐標(biāo);

2)因?yàn)樗倪呅?/span>AOBC是菱形,根據(jù)菱形性質(zhì),可以得出點(diǎn)O和點(diǎn)C關(guān)于直線AB對(duì)稱,點(diǎn)B和點(diǎn)A關(guān)于直線OC對(duì)稱,因此,可求出點(diǎn)B的坐標(biāo),根據(jù)二次函數(shù)y=ax2+bx的圖象經(jīng)過點(diǎn)B1,2),C2,0),將BC代入解析式得出ab的值,進(jìn)而得出其解析式.

試題解析:(1y=x2-2x-1=x-12-2,

∴頂點(diǎn)A的坐標(biāo)為(1-2).

∵二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱軸上.

∴二次函數(shù)y=ax2+bx的對(duì)稱軸為:直線x=1,

∴點(diǎn)C和點(diǎn)O關(guān)于直線x=1對(duì)稱,

∴點(diǎn)C的坐標(biāo)為(2,0).

2)因?yàn)樗倪呅?/span>AOBC是菱形,所以點(diǎn)B和點(diǎn)A關(guān)于直線OC對(duì)稱,

因此,點(diǎn)B的坐標(biāo)為(1,2).

因?yàn)槎魏瘮?shù)y=ax2+bx的圖象經(jīng)過點(diǎn)B1,2),C2,0),

所以

解得

所以二次函數(shù)y=ax2+bx的關(guān)系式為y=-2x2+4x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,C,B三點(diǎn)在同一條直線上,△DAC和△EBC都是等邊三角形,AE,BD分別與CD,CE交于點(diǎn)M,N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN,其中正確結(jié)論的個(gè)數(shù)是( )

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)x1 , x2 , …,xn的方差是s2 , 則新的一組數(shù)據(jù)ax1+1,ax2+1,…,axn+1(a為非零常數(shù))的方差是(用含a和s2的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(3,﹣2)所在象限是(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A-2,4),則點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,線段A′B′是由線段AB經(jīng)過平移得到的,已知點(diǎn)A(﹣2,1)的對(duì)應(yīng)點(diǎn)為A′(3,﹣1),點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′(4,0),則點(diǎn)B的坐標(biāo)為( )
A.(9,﹣1)
B.(﹣1,0)
C.(3,﹣1)
D.(﹣1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)寫出一個(gè)圖象經(jīng)過第一、三象限的正比例函數(shù)的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠1=50°5′,∠2=50.5°,則∠1與∠2的大小關(guān)系是(
A.∠1=∠2
B.∠1>∠2
C.∠1<∠2
D.無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案